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Abstract—The ageing of the iris and its influence on recognition
performance is a hotly debated topic. Template ageing in iris
biometrics is often attributed to changes during acquisition rather
than the natural ageing of the iris. In this paper, we attempt
to isolate template ageing effects in iris recognition by using a
semi-controlled environment (selecting a subset from a larger
database) and controlling as many factors as possible in the
biometric tool-chain. This includes manual segmentation and the
use of a non-linear biomechanical model to alleviate the influence
of pupillary dilation. Despite our efforts, we still find iris template
ageing to be apparent in the results.

I. INTRODUCTION

There is a certain controversy regarding template ageing in
iris recognition. The IREX VI report [1] by Grother et al.
claims that there is no evidence of an iris template ageing
effect. Bowyer and Ortiz [2] critically evaluated the IREX VI
report and Grother et al. [3] replied to the critical evaluation.

One of the points of disagreement was the definition and,
consequently, the evaluation of iris ageing. The ISO/IEC
19795–1 standard on biometric performance testing and re-
porting defines template ageing as the increase in error rates
caused by time-related changes, meaning changes in the bio-
metric pattern, the presentation of the pattern and the sensor.

The IREX VI report excludes all the effects which are not
related to “irreversible changes to the anatomy, primarily the
iris texture” and states that “dilation should not be considered
part of ageing because it varies stochastically and can be
mitigated”. It also defends that the increased rejection rates
attributed to ageing can often be reduced to increased rejection
rates due to blur, noise, occlusion and pupil dilation. Bowyer
and Ortiz criticize this view and the fact that, of the assumed
reversible effects, only dilation is considered in the report.

There are ways to control certain acquisition effects like
illumination, which can be changed in a controlled way, or
blinking, which can be prevented by requiring reacquisition.
However, some of these effects are not isolated. Take illu-
mination, for example. It is possible to provide a constant
illumination of the iris texture, but by doing that, it is not
possible to ascertain a constant pupillary dilation, because
pupil size changes with age. It is well known from both
the medical [4] and biometrics context [5] that pupil size is
affected by age, with smaller pupils being predominant among
the elderly population. This relates directly to the disregard of
illumination and/or dilation changes as apparent ageing effects

by the IREX VI report – either the illumination is controlled to
produce a constant lighting and consistent exposure of the iris
texture, or to unify the pupillary dilation. In the authors’ view,
it is correct to exclude reversible or preventable effects when
evaluating iris ageing; however, it should not be assumed that
the effects exist in isolation.

Overall, there are a number of questions which remain to be
answered regarding iris template ageing. As Grother et al. in
IREX VI, some authors claim that iris ageing is of a negligible
significance [6], while results presented by other authors [7]–
[9] suggest that the iris template ageing effect is significant.
In this paper, we present a database which is a subset of the
upcoming CASIA v5.0 subject ageing database, and we try to
control as many factors as possible and analyze if ageing is
still apparent. This is done by a careful selection of the images
in the database and an analysis of the possible effects during
acquisition. We provide a ground truth for segmentation which
further helps to reduce the impact of acquisition effects on the
results.

II. THE CASIA IRIS AGEING DATABASE

The database used in this paper is a subset of the upcoming
CASIA v5.0 Iris Database1. The full original database contains
120 images per eye and user from video sequences captured in
2009, and 20 images per eye and user from video sequences
captured in 2013. Wild et al. [10] used the full database
to analyse the impact of segmentation and quality on iris
recognition performance. Since our goal is to eliminate as
many acquisition effects as possible, we used the results from
their work to guide our selection.

In 2009, six different recording sessions were carried out,
with different characteristics regarding pupillary dilation, oc-
clusion, blur, and use of glasses. Wild et al. found that
most sessions have a negative impact on the recognition rate,
suggesting a rejection of all sessions except sessions 1 and
4. We based the selection of users on the 2009 session 1,
which contains images without glasses. In 2013, images were
recorded in a more controlled setup, showing more consistent
pupillary dilation and less frequency of glasses. We similarly
used the session without glasses in 2013. From these sessions
we removed some individuals: 0023, 1067 (no data in 2009);

1see http://www.biometrics.idealtest.org



1004 (no images without glasses in 2013); 0190, 0191 (no
data in 2013).

Since images in the database are from a video sequence of
the eyes, temporal proximity resulted in almost equal images.
To avoid that, we chose ten images per eye, spaced apart as
fas as possible in the temporal domain. Images in which large
parts of the iris were occluded by the eyelids were not taken
into consideration. The resulting database consists of 1880
images captured from both eyes of 47 users. There are 10
images per eye and year.

III. ANALYSIS OF THE DATABASE

To perform the experiments we use USITv2 (University of
Salzburg Iris Toolkit v2.0.x [11], [12]), a publicly available
iris recognition software package which comprises different
algorithms for iris pre-processing, feature extraction, and com-
parison. Segmentation is performed using a manual method
(manuseg) and a method based on contrast-adjusted Hough
transform (caht) proposed by Rathgeb et al. [13]. Manual
segmentation uses a single operator, similarly to IRISSEG-
EP [14]. The inner and outer iris boundaries are segmented
using an ellipse fitting, and the lower and upper eyelids using
a polynomial fitting2. Normalization is performed using the
rubber sheet model [15]. To counter dilation changes, we also
use the nonlinear biomechanical-based normalization method
proposed by Tomeo-Reyes et al. [16]. Feature extraction is
based on 1D log-Gabor filters (lg), as proposed by Masek
[17].

A. Impact of Acquisition Effects

The objective in this section is to analyze those acquisition
effects which can lead to apparent iris template ageing. The
following effects were considered:

• Head tilt was analysed and found to be in the range of
±24 bit (±16.875◦). Rotation was compensated for in the
experiments by using the relevant USIT [11] features.

• Sensor ageing has no significant influence as shown by
Bergmüller et al. [18]. The database they used for their
research is a superset of the database we are using, so
the results clearly apply. They extracted an ageing model
of the sensor based on the four-year gap and applied the
effects of an artificial sensor-ageing to the images, which

2The list of iris images and manual segmentation data for the database
used in this paper is available online at http://www.wavelab.at/sources/
Hofbauer16d. Original images will be available in the upcoming CASIA v5.0
Iris Database.

produced a negligible influence for up to 96 years of
sensor-ageing.

• Obfuscation of the iris by the eyelids, due to blinking or
similar effects, was minimized by selecting images from
the database where this does not occur.

• Obfuscation of the iris by glasses, which might introduce
additional reflections and distortions, was prevented by
choosing images of subjects without glasses.

• Illumination conditions were analysed and found to be
relatively stable over the two years. A comparison of
the aggregate histograms of both years shows a close fit,
with the main difference being a 1-bit shift in brightness
towards white in 2013 compared to 2009. The overlap
coefficient between the aggregate histograms of 2009 and
2013 is 73.13% (no shift) and 94.83% (correcting the 1-
bit shift).

• Blurring effects and visible interlacing appear in both the
2009 and 2013 images, and increase the error rates.

B. Impact of Segmentation

This experiment aims at finding whether changes in iris
recognition performance between 2009 and 2013 are due to
template ageing effects or if they are linked to segmentation
errors. Wild et al. [10] tested the impact of segmentation on the
CASIA 5.0 database and found that segmentation algorithms
“do not change the overall picture of observable impact of
an increased timespan. However, depending on the choice of
quality-based filtering, this impact is either more pronounced
or less pronounced than other variability”. The use of manual
segmentation should remove this variability.

Using caht and manual segmentation, we performed a
full comparison for each year (intra-year tests) and between
years 2009 and 2013 (inter-year tests). The VeriEye tool by
Neurotechnology was used to ensure that the results and the
apparent template ageing are not a systemic problem of the
USIT. The results are given in Table I.

The difference between intra- and inter-year comparisons is
very pronounced, with worse performance in inter-year tests.
Manual segmentation leads to better performance than caht.
While this improvement affects all comparisons similarly,
the apparent ageing effect is not removed, as shown by the
fact that inter-year error rates are higher than intra-year. The
segmentation and features of VeriEye are superior, which is
known [12], but the system shows the same properties when it
comes to apparent template ageing. Poor segmentation might
be mistakenly identified as template ageing, but this is not the

TABLE I
INTRA- AND INTER-YEAR PERFORMANCE GIVEN AS EQUAL ERROR RATE (EER) AND FNMR AT OPERATION POINT FMR=0.01% (OP 0.01). IT MAY BE

NOTED THAT VERIEYE USES ITS OWN SEGMENTATION AND FEATURES.

Manual caht VeriEye

Comparison EER [%] OP 0.01 [%] EER [%] OP 0.01 [%] EER [%] OP 0.01 [%]

2009–2009 2.512 13.197 4.184 9.722 1.346 2.458
2009–2013 3.531 55.442 8.810 56.722 1.678 3.864
2013–2013 0.312 1.532 5.135 6.327 0.709 0.709
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(c)

Fig. 1. Hamming scores, mean ± one standard deviation, for genuines and imposters grouped by user. (a) Segmentation with caht and lg-features. (b)
Manual segmentation and lg-features. (c) Neurotechnology VeriEye. Note that, unlike (a) and (b), lower scores are worse in this case.

case here since even manual segmentation leads to a worse
inter-year than intra-year performance.

To further support this conclusion, we plotted the mean and
standard deviation of the Hamming scores per user for genuine
and imposter comparisons in Figure 1. The improvement due
to manual segmentation can be clearly seen, but the difference
between intra- and inter-year statistics is very pronounced even
with manual segmentation. In this experiment, it can also be
observed that caht segmentation does not simply degrade all
results; rather, there seem to be specific users for which the
segmentation fails. An example of this is ID 0003 (both eyes),
where caht clearly introduces errors. For other users like ID
0007 (both eyes), the difference between caht and manual
segmentation is negligible.

Overall, the use of manual segmentation does not eliminate
the apparent template ageing effects, but it does not introduce
additional errors either, and in that sense it is preferable.

C. Impact of Pupillary Dilation
To ascertain the influence of pupillary dilation on

the performance of the iris recognition system, we used
the biomechanical-based normalization scheme by Tomeo-
Reyes et al. [16]. Results obtained with this scheme were com-
pared with those obtained with the rubber sheet model (RSM)
used by the USIT (following Daugman’s approach [15]).

In [16], a biomechanical model (BMM) based on the work
of Clark et al. [19] was used to define a non-linear nor-
malization scheme that improves iris recognition under light-
induced pupil dilation. The BMM was demonstrated to result
in superior performance compared to RSM when matching
iris images exhibiting significant differences in dilation. The
performance of both models was shown to be quite similar
when matching iris images with small dilation differences,
with slightly better results obtained by the RSM.

Manual segmentation was used to perform the experiments



TABLE II
PERFORMANCE COMPARISON OF RSM AND BMM NORMALIZATION, WITH BOTH BioC AND BioI SETUP. THE TABLE SHOWS EQUAL ERROR RATE (EER)

AND FNMR AT OPERATION POINT FMR=0.01% (OP 0.01).

Rubber sheet BioC BioI

Comparison EER [%] OP 0.01 [%] EER [%] OP 0.01 [%] EER [%] OP 0.01 [%]

gallery(2009) – 2009 1.773 9.235 1.843 13.404 2.178 12.191
gallery(2009) – 2013 2.548 46.393 4.778 62.281 2.979 53.813

reported in this section. To quantify the pupillary dilation,
the ratio between the pupil and iris radii was used. This
ratio, denoted as D, is referred to as dilation ratio (D =
Rpupil/Riris). Since the manual segmentation process uses
ellipses to define the boundaries, the pupil and iris radii are
calculated by using approximated circles that have the same
area as the corresponding ellipses. The radius R of each circle
is calculated as R =

√
a ∗ b/4, where a and b are the major

and minor axes of the ellipse.
The BMM estimates the non-linear displacement of the iris

tissue using the difference in dilation ratio between the sample
and a reference iris image (see [16] for further details). To
evaluate a realistic scenario, a gallery of enrolled images was
chosen. The gallery contains one image per eye from 2009,
selected by visual inspection. The enrolled images are used as
the reference images.

The BMM is used in this paper to analyze whether changes
in performance between 2009 and 2013 are due to template
ageing effects or linked to pupillary dilation changes. It may
be noted that the BMM assumes a positive radial displacement
of the pupillary boundary from the resting state (given by
the dilation ratio of the reference image), so the model is
not optimized for constriction. Keeping this in mind, two
experiments were defined:

• BioC: This experiment assumes that only iris codes are
stored in the gallery, i.e., only the query images can be
normalized using the BMM. In this case, all query images
(regardless of the fact that they are dilated or constricted
in comparison with the reference) are normalized using
the BMM.

• BioI: This experiment assumes that iris images are stored
in the gallery, and the BMM is applied to the gallery or
query image depending on which one shows a higher
dilation degree. In this case it is possible to properly
account for dilation and constriction, since positive ra-
dial displacement of the pupillary boundary is always
assumed.

In both cases the gallery was compared to the query images
from 2009 (intra-year) and to query images from 2013 (inter-
year). The results of these two experiments are given in
Table II, together with a regular experiment using only RSM-
based normalization.

From the BioC test we can see that the BMM does not
perform as well as the RSM. For intra-year comparisons, the
main reason is that the difference in dilation ratio between
the reference and the sample is too small to reach the point

where we can observe the non-linear behaviour of the iris
tissue and use the BMM effectively. The RSM can handle these
small variations. For inter-year comparisons, the performance
degradation is related to the fact that constriction is not
properly accounted for in this scenario. The BioI test improves
on the inter-year comparison compared to BioC but reduces the
intra-year performance. The intra-year performance suggests
that the BMM is not effective when the difference in dilation
degree between the reference and the sample is too small to re-
sult in non-linear iris tissue displacement. The improvement of
the inter-year comparison suggests that the dilation difference
over the four years is larger and shows a non-linear behaviour.

To further support these conclusions, additional information
is presented in Table III, which shows the number of times
where the RSM and BMM were used to normalize the query
images in BioI. In the intra-year comparisons, the RSM and
BMM were used relatively evenly, which suggests dilation
changes resulting from blinking or other short-term changes
in the behaviour or environment. On the contrary, the number
of normalizations with the BMM dropped sharply in the inter-
year comparisons. This means that 88% of the query images
had a more constricted pupil than the 2009 reference. This is
in accord with the medical study by Peterson et al. [4] which
found that the pupillary radius decreases with age. Even so, the
RSM performs slightly better than the BMM. As stated before,
this result correlates well with the fact that the difference in
dilation degree between the query and the gallery image is
still too small to use the BMM effectively.

TABLE III
NUMBER OF TIMES THE IMAGES WERE NORMALIZED WITH THE RSM OR

BMM FOR THE BioI TEST.

Rubber sheet Biomechanical Total
(RSM) (BMM)

gallery(2009) – 2009 53.43% 46.57% 79524
gallery(2009) – 2013 87.87% 12.13% 88360

An analysis of the change in dilation ratio D between years
was also conducted. The one-way analysis of variance was
calculated for each eye to check whether the difference in
dilation ratio between years is significant. Of the 94 eyes,
72 showed a significant change with critical p∗ = 10−6 and
87 showed a significant difference with p∗1% = 0.01. The
change in dilation ratio between years is µ∆D = −0.125 with
σ∆D = 0.081. While this decrease is statistically significant,
none of the dilation ratios reach values within the range of



high constriction or dilation, which can be under 0.2 and over
0.7, respectively (according to [16], these are the cases which
are more effectively handled by the BMM).

The previous results support the main conclusions of this
analysis, summarized as follows:
• gallery(2009) - 2009: The difference in dilation ratio

between the gallery image and the query is too small
to reach the point where we can observe the non-linear
behaviour of the iris tissue and use the BMM effectively.
The RSM can handle these small variations.

• gallery(2009) - 2013: While there is a clear decrease in
dilation ratio (constriction), the results obtained with the
RSM still outperform those from the BMM. The difference
in dilation ratio between the gallery image and the query
does not seem big enough to use the BMM effectively.
Iris recognition performance is degraded regardless of the
model used. This, coupled with the fact that the image
acquisition process showed relatively constant illumina-
tion, suggests that the performance degradation is not only
caused by the changes in pupil size, but probably by some
other effect related to template ageing.

IV. CONCLUSION

We provide an iris database with a four-year time lapse
between captures which has been selected to exclude ac-
quisition factors which could potentially result in apparent
iris template ageing. We also provide a manual segmentation
of the database to minimize the influence of these factors.
Despite this controlled approach, a decrease in the pupillary
radius with time is still detectable. This is consistent with
recent medical research results which show that the pupillary
radius decreases with age. We tried to compensate the effect
of the pupillary change by using a biomechanical model for
nonlinear iris normalization. Despite our efforts, iris template
ageing effects are still apparent, with worse iris recognition
performance obtained for inter-year comparisons compared to
intra-year comparisons.
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