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Abstract

The richness of the iris texture and its variability across
individuals make it a useful biometric trait for personal au-
thentication. One of the key stages in classical iris recog-
nition is the normalization process, where the annular iris
region is mapped to a dimensionless pseudo-polar coordi-
nate system. This process results in a rectangular structure
that can be used to compensate for differences in scale and
variations in pupil size. Most iris recognition methods in
the literature adopt linear sampling in the radial and angu-
lar directions when performing iris normalization. In this
paper, a biomechanical model of the iris is used to define
a novel nonlinear normalization scheme that improves iris
recognition accuracy under different degrees of pupil dila-
tion. The proposed biomechanical model is used to predict
the radial displacement of any point in the iris at a given
dilation level, and this information is incorporated in the
normalization process. Experimental results on the WVU
pupil light reflex database (WVU-PLR) indicate the efficacy
of the proposed technique, especially when matching iris
images with large differences in pupil size.

1. Introduction

The human iris contains rich texture information defined
by distinctive features such as furrows, crypts, ridges, and
a zigzag collarette. The textural complexity and variability
of the iris across individuals make it a useful biometric trait
for recognition of individuals [9].

The goal of an iris recognition system is to compare two
irides and generate a match score indicating their degree of
similarity or dissimilarity. This process involves five main
stages [12]: data acquisition, segmentation, normalization,
encoding, and matching. Once a 2D image of the eye has

been captured using an iris sensor, the iris region is isolated
from other structures in its vicinity during the segmentation
stage. The resultant iris region is then unwrapped into a
rectangular block of fixed dimensions during the normal-
ization stage. This stage, which can be regarded as a sam-
pling process, is critical to the success of the subsequent
encoding and matching stages, since it counteracts changes
in the size and scale of the iris pattern. The normalized iris
image is then subjected to filtering, and the ensuing pha-
sor responses are encoded into a bit string referred to as an
iris code. The dissimilarity between two irides is computed
using the Hamming distance between their respective iris
codes.

The most common normalization method in the literature
was proposed by Daugman [4] (see Figure 1). According to
Daugman’s rubber sheet model, the remapping of the iris
image I(x(r, θ), y(r, θ)) → I(r, θ) from Cartesian coor-
dinates to a doubly dimensionless pseudo-polar coordinate
system can be represented as:

x(r, θ) = (1− r) xp(θ) + r xs(θ),

y(r, θ) = (1− r) yp(θ) + r ys(θ),
(1)

where (xp(θ), yp(θ)) and (xs(θ), ys(θ)) are respectively the
discrete coordinates nearest to the pupillary boundary and
the limbic boundary at a given angle θ ∈ [0, 2π], and r is
the normalized radius in the interval [0, 1].

Figure 1: Iris normalization according to the classical rubber
sheet model [4].



It is important to note that variations in iris size can be
caused due to capturing iris images at different distances or
from changes in pupil size. While the rubber sheet model
accounts for these variations, it is not robust enough to
counteract the degradation of iris recognition performance
when certain degrees of pupil dilation occur [11]. This is
due to the linear nature of the sampling process being per-
formed during normalization.

As will be explained in detail in Section 2, physiologi-
cal studies [2, 21] indicate that the deformation of the iris
tissue caused by pupil dilation is nonlinear. Therefore, the
incorporation of a nonlinear iris normalization scheme will
likely address the problems associated with large changes
in pupil size. In [22], Yuan and Shi introduced a nonlinear
normalization scheme based on the structure of iris fibers
proposed by Wyatt [21]. As detailed in the next section,
one of the problems of Wyatt’s model is that it does not take
into account relevant aspects of the iris physiology such as
the changes in its elastic properties or the muscle activity.
In this sense, Yuan and Shi’s approach is limited and other
approaches should be explored.

In this paper, a biomechanical model based on the work
of Clark et al. [2] is used to define a new nonlinear normal-
ization scheme that improves iris recognition performance
under various degrees of pupil dilation. Unlike previous
models [21], this work takes into account the elastic proper-
ties of the iris and the effects of the iris musculature. An ex-
ample of the efficacy of the proposed normalization scheme
can be seen in Figure 2, which illustrates the improvement
in genuine match score (Hamming distance or HD) when
using the proposed approach versus the classical approach
based on the rubber sheet model [4].

(a) Subject #1 before dilation (b) Subject #1 after dilation

(c) Subject #2 before dilation (d) Subject #2 after dilation

Figure 2: Images from two different subjects before and after
pupil dilation. (a) HD (rubber sheet) = 0.424, HD (biomechanical)
= 0.3 (29.25% score improvement). (b) HD (rubber sheet) = 0.407,
HD (biomechanical) = 0.293 (28.01% score improvement).

2. Effect of changes in pupil size: an overview

The effect of changes in pupil size on iris recognition has
become an active research topic in recent years, and several
factors have been demonstrated to induce varying levels of
pupil dilation that negatively affect the performance of iris
recognition systems. These factors include changes in the
ambient lighting conditions [11], alcohol [1], drugs [5], and
aging [6, 8].

According to [11], when the degree of dilation at enrol-
ment is similar to the degree of dilation at recognition, the
best performance is obtained for highly constricted pupils,
whereas the worst performance is obtained for highly di-
lated pupils. If the degree of dilation is different during en-
rollment and recognition, both dilation and constriction can
affect the performance. Recently, Tomeo-Reyes and Chan-
dran [17] performed a bit error analysis on the iris code to
investigate the effect of light- and drug-induced pupil di-
lation and constriction on the consistency of texture infor-
mation within the iris. Their results showed that bit errors
increase by over 10% when comparing a ‘normal’ image
with dilated or constricted images.

Other researchers have focused their attention on mathe-
matically modelling the effects of iris deformation. A num-
ber of such approaches are based on the physiology of the
iris. In [21], Wyatt presented the ‘minimum-wear-and-tear’
meshwork, which models iris deformation as a combina-
tion of linear and additive nonlinear stretches. The premise
of this work is based on [15], in which the iris collagen
structure is modelled as a set of fibers arranged in a series
of parallel arcs connecting the pupil and iris boundaries in
clockwise and counterclockwise directions. As stated by
Wyatt, while the proposed model provides a skeleton of the
iris, a layer of material needs to be connected to the skeleton
to model a real iris.

On the other hand, pattern recognition based approaches
have also been used to counteract the effects of iris defor-
mation. From Wyatt’s formulation, Wei et al. [18] presented
a deformation correction method that used a Gaussian func-
tion to model the deviation from the linear stretch. In [16],
Thornton et al. defined a distortion-tolerant similarity met-
ric using the MAP estimate of the parameters of the rela-
tive deformation between iris patterns to be matched. Al-
though both approaches improved iris recognition perfor-
mance, their potential is limited by the fact that they are
dependent on the particular dataset used for parameter esti-
mation. Unlike the previous approaches, the nonlinear nor-
malization scheme proposed in this paper is dataset inde-
pendent.

3. Biomechanical model development

From the work of [2], biomechanics [7] can be used to
predict the nonlinear dynamics of the iris as a result of pupil



Table 1: Mechanical nomenclature relevant to the definition of
the biomechanical model.

Normal strain (εr, εθ)
Normalized deformation acting

perpendicular to the material

Normal stress (σr, σθ)
Internal forces acting

perpendicular to the material

Shear stress (τrθ)
Internal forces acting

tangential to the material

Young’s moduli (Er, Eθ)
Measure of the level of stiffness

of an elastic material

Poisson’s ratio (ν)
The negative ratio of transverse

to axial strain of the material

Displacement (u) The amount of deformation of the material

dilation. Such an approach complements the classical pat-
tern recognition principles with insights about the muscle
activity and the elastic properties of the iris. The relevant
notation used for deriving the biomechanical model is sum-
marized in Table 1.

The mathematical formulation of the biomechanical
model starts by considering the iris region as a thin cylin-
drical shell. In this formulation, the z dimension is much
smaller than the r and θ dimensions, so the iris can be
viewed as a thin plate where the loads are applied uniformly
over the z dimension. It is important to note that, from an
iris recognition standpoint, only the two-dimensional per-
spective in the r-θ plane is considered. Hence, it is assumed
that the normal stress in the z direction, σz , and the result-
ing shear stresses τrz and τθz are negligible. Further, an ax-
isymmetric load is assumed. As a result, the displacement u
is independent of θ. Consequently, it follows that the shear
stress in the r-θ plane, τrθ, is also negligible. It is important
to note that soft biological tissues, like the iris, experience
finite strain. This formulation approximates this effect by
considering nonlinear effects with a linear constitutive law.
With these assumptions, the Cauchy-Euler equations [14]
that define the strain vector ~ε = 〈εr, εθ〉 reduce to

εr = u′ − 1
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where u = u(r) represents the radial displacement and the
primes ()’ denote ordinary differentiation with respect to r.
Also, the equilibrium condition that defines the stress vector
~σ = 〈σr, σθ〉 reduces to

dσr
dr

+
σr − σθ

r
= 0. (3)

Adopting Whitcomb et al.’s [19] assumption that the iris
material is orthotropic, the relationship between the stress
and strain vectors, ~σ and ~ε, is given by (4), where ν is the
Poisson’s ratio in the radial direction, Er and Eθ are the

Young’s moduli in the radial and angular directions, and ζ
is the ratio between them (ζ = Eθ/Er).

σr =
Er

(1− ζν2)
(εr + ζνεθ) ,

σθ =
Eθ

(1− ζν2)
(νεr + εθ) .

(4)

Combining equations (2)-(4) yields the following differ-
ential equation for the displacement u(r) of the iris tissue
within the annular region r ∈ (r1, r2) [2]:
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Examining (5), it is clear that the iris deformation is non-
linear. Next, an observation is made that, in the r− θ plane,
deformation occurs at the pupillary boundary while the lim-
bus boundary remains stationary. Hence, the boundary con-
ditions in (6) are posed, where r1 and r2 are the resulting
pupil and limbus radii respectively.

u (r1) = µ1, µ1 > 0,

u (r2) = 0.
(6)

Numerical simulation of the radial displacement u(r)
calculated from (5) was carried out via the finite element
method (FEM). While other numerical methods are also
possible, the FEM was chosen due to its flexibility with re-
gard to mesh generation. An example is shown in Figure 3.
The FEM implementation consisted of converting (5) into a
variational form and discretizing the annular domain into a
number of vertices or radial positions where the pupil radius
was increased from 2mm to 4.5mm (extreme dilative state).
Additionally, the limbus radius was fixed as 6mm. Next, the
average material parameters Er and Eθ were adopted from
Whitcomb et al. [19], where Er = 4 kPa, and Eθ = 2.97
kPa. From [10], the empirical range for the Poisson’s ratio
is between 0.45 and 0.5 (i.e., ν ∈ [0.45, 0.5)). The Pois-
son’s ratio used in this work is ν = 0.49. Comparisons
were made by graphing the nonlinear solution u(r) versus
the linear solution provided by the rubber sheet model (see
Figure 3a). The total deformation was calculated as r+u(r)
(see Figure 3b).

4. Iris normalization according to the biome-
chanical model

In this section, a nonlinear normalization method is pro-
posed, which reduces the effect of pupil dilation on iris
recognition performance. Unlike the rubber sheet model,
in which equally spaced radial samples are considered at
each angular position, the proposed method uses the radial



(a) (b)

Figure 3: Result of deformation when the pupil radius is increased from 2 mm to 4.5 mm (extreme dilative case) in an iris with a 6
mm-radius limbus. (a) Radial displacement u(r) and (b) final radial positions r + u(r).

Figure 4: Iris normalization according to the biomechanical model.

displacement estimated by the biomechanical model to per-
form the radial sampling.

Given an input iris sample with a pupil radius Rp1, the
following process is used to normalize it (see Figure 4):

1. Define the reference image used to estimate the dila-
tion level. In this work, the enrolled image, against
which the input iris sample is matched, is used as the
reference image. Given the pupil radius of the ref-
erence image, Rp0, the dilation level is calculated as
Rp1 − Rp0. To avoid any significant impact on recog-
nition speed, the values of the pupil and iris radii of
the reference image (Rp0 and Rs0, respectively) are
pre-computed and stored.

2. Discretize the annular domain defined by Rp0 and Rs0
into a number N of uniformly spaced radial positions
r, where N is the height of the normalized image.

3. At each radial position, r, use (5) to solve for u(r).

Use the pupil boundary Rp0 to start iterating. The ring
located at radius r is moved to the final position lo-
cated at radius r′ = r + u(r). The process to numeri-
cally simulate u(r) was explained and illustrated with
an example at the end of the previous section.

4. Stop iterating once the radius reaches that of the sam-
ple image, Rp1.

5. Use the values of r′ to perform the mapping
I(x(r, θ), y(r, θ)) → I(r, θ) of the iris pixels accord-
ing to the following equations:

r′ = r + u(r), (7)

x(r′, θ) = (1− r′) xp(θ) + r′ xs(θ),

y(r′, θ) = (1− r′) yp(θ) + r′ ys(θ).
(8)

As in the rubber sheet model (see (1)), the interpola-
tion using the nearest image pixels is bilinear. The addi-



(a) (b)

Figure 5: Iris normalization according to (a) rubber sheet model and (b) biomechanical model. White dashed contours
represent samples used to create the normalised image.

tional computational demand of the proposed normaliza-
tion scheme occurs when the radial displacement vector
u(r) is computed based on (5). This vector has to be
computed for every probe-gallery pair and adds an addi-
tional 2.7 ms in computational time compared to the rubber
sheet model (time value obtained using MATLAB R2014a-
8.3.0.532 and an Intel Core i7 3.4GHz CPU). The difference
between the rubber sheet normalization method and the pro-
posed method is illustrated in Figure 5.

5. Data and iris recognition algorithm

To evaluate the normalization method, the WVU pupil
light reflex database (WVU-PLR) is used [3]. This database
includes images from 54 subjects collected under different
illumination conditions. A first subset was collected con-
sidering a linear increase of light intensity (Experiment A),
and a second subset was collected by alternating periods of
absence and presence of light (Experiment B). This is the
only dataset that we are aware of in which the iris has been
subjected to systematic dilation and constriction by appli-
cation of external light.

Since large differences in pupil size are of interest in the
experiments of this research work, only images from Ex-
periment B are considered. In this experiment, images were
first captured with a source light off, then on, and then off
again, in intervals of approximately 10 seconds. The source
light is a tungsten krypton bulb. To guarantee illumination
homogeneity, only those images captured while the source
light is on are considered. Illumination homogeneity within
subjects is important, since it guarantees that none of the re-
sults reported in Section 6 are unduly affected by photomet-
ric variations on the iris stroma. Finally, only near-infrared
(NIR) images are used. The resultant dataset, which will

be referred to as WVU Flash Data Set (WVU-FDS) from
here on, consists of 2053 left-eye images from 48 users. Al-
though the initial image resolution is 1392 × 1040, images
are resized to 640× 480 before processing.

In order to quantify pupil dilation, the ratio between the
pupil and iris radii is used. This pupil-to-iris ratio, de-
noted as ρ, will be referred to as dilation ratio throughout
this paper (see (9)). While the dilation ratio could in prin-
ciple vary between 0 and 1, the range of values obtained
for the database used is from about 0.2 (highly constricted
pupil), to about 0.7 (highly dilated pupil), as depicted in
Figure 6. Based on the distribution of ρ, images from the
WVU-FDS can be divided into three categories: constricted
images (blue), images with a normal dilation ratio (yellow),
and dilated images (red). Some sample images can be seen
in Figure 7. Further details of each category are provided in
Table 2.

ρ =
pupil radius

iris radius
. (9)

Figure 6: Distribution of dilation ratios in WVU-FDS.



(a) (b) (c)

Figure 7: WVU-FDS sample images of the same eye with differ-
ent dilation ratios. (a) ρ = 0.62, (b) ρ = 0.40, and (c) ρ = 0.27.

Table 2: WVU-FDS categorization according to dilation ratio.

Conditions Dilation/ Dilation ratio Users Images
constriction level

Normal Normal 0.35 < ρ < 0.475 46 776

Dilation Low 0.475 ≤ ρ < 0.575 40 193

High ρ ≥ 0.575 17 41

Constriction Low 0.275 < ρ ≤ 0.35 33 889

High ρ ≤ 0.275 13 154

According to this categorization, the number of dilated
images is considerably lower than that of constricted im-
ages. This is due to the image acquisition process. As pre-
viously explained, images in the WVU-FDS were collected
by alternating periods of absence and presence of light. Im-
ages captured right after the source light was activated and
a sudden burst of light occurred are dilated, but due to the
short pupillary latency they are less numerous. Since the
source light is on for 10 seconds, the number of constricted
images is considerably higher.

The iris recognition method used in the experiments
was proposed by Masek [13] using Daugman [4] and
Wildes [20] approaches as a basis. In the segmentation
stage, the circular Hough transform is used to locate the
pupil and iris boundaries. Eyelids are isolated by fitting a
line to them using the linear Hough transform. Eyelashes
and reflections are isolated by thresholding. The iris area is
normalized to a rectangular grid of dimensions 20 × 240.
In the feature extraction stage, phase data from 1D Log-
Gabor filters is used to represent the texture information.
The ensuing phasor responses are quantized, setting two
bits of phase information. The resulting iris code has 9600
bits. Iris codes are compared using Hamming distance after
barrel-shifting to account for iris rotation.

Two important changes are made with respect to the orig-
inal algorithm. First, all images from WVU-FDS are au-
tomatically segmented and then subjected to a secondary
manual segmentation process to refine the mask and min-
imize any segmentation error. Only minor imperfections,
impossible to be eliminated manually, remain. This guar-
antees that any change in performance is primarily due to
the normalization process. The second change involves the
replacement of the normalization method in Masek’s code
with the two methods considered and compared in this pa-
per: the rubber sheet model and the biomechanical model.

6. Experimental validation
The performance of the proposed normalization scheme

is evaluated on WVU-FDS and compared to that of the rub-
ber sheet model. From the three categories in Table 2, only
those images in the ‘normal’ and ‘dilation’ categories are
analyzed here. The main reason for this is that the current
definition of the biomechanical model assumes a positive
radial displacement of the pupillary boundary (see (6)) from
the resting state, which is defined by a dilation ratio within
the normal range. The deformation is then assumed to occur
from the resting state. The model is therefore not directly
applicable to constriction, unless additional modifications
are introduced.

The match scores are calculated using Masek’s method
in both cases, after manually refining the iris masks to mit-
igate segmentation errors. Samples from each of the two
subsets under analysis (i.e., ‘normal’ and ‘dilated’) are com-
pared to a gallery image that exhibits a normal dilation ratio.
Consistent with Table 2, the total number of genuine com-
parisons is 730 in the case of images with normal dilation
ratio, and 234 in the case of dilated images. In order to
perform cross-validation and obtain a confidence interval,
repeated random sub-sampling based validation is used to
compute the mean and standard deviation of the matching
error rates. Three quarters of the total number of images are
randomly chosen to perform the Monte Carlo trials.

6.1. Images with normal dilation ratio

For WVU-FDS, dilation ratio values between 0.35 and
0.475 are considered to be within the normal range. The
radial displacement in the normalised iris image, which
occurs when the pupil dilates from 2.47 mm to 2.88 mm
in an iris with a 6 mm-radius limbus, is shown in Fig-
ure 8 for both the rubber sheet model and the biomechanical
model. This is equivalent to considering dilation ratios be-
tween the mean value (ρ = 0.41) and the maximum value
(ρ = 0.475) in the normal range. As observed in the fig-

Figure 8: Result of deformation (final radial positions r + u(r))
when the pupil dilates from 2.47 mm to 2.88 mm in an iris with
a 6 mm-radius limbus. This is equivalent to considering dilation
ratios between the mean value (ρ = 0.41) and the maximum value
(ρ = 0.475) in the normal range.



Figure 9: Score difference (rubber sheet model score minus
biomechanical model score) for genuine comparisons considering
images with normal dilation ratio. Red colour represents lower
biomechanical model score and blue colour represents lower rub-
ber sheet model score. Low scores are desirable, so the more dots
of a certain colour, the better is the corresponding normalization
method. The size of the dots represents the difference between the
scores, and the dashed yellow line the EER threshold for the rub-
ber sheet model (scores represented in y axis). Since no score is
over the threshold, no matching errors occur.

ure, the difference between the two models is quite small,
which means that the difference in performance due to the
two normalization models is negligible in this normal range.

The small difference in performance between the two
models can also be observed in Figure 9. The figure shows
the difference between the rubber sheet model scores and
the biomechanical model scores for genuine comparisons.
Red colour represents lower biomechanical model score and
blue colour represents lower rubber sheet model score. Low
scores are desirable, since they lead to smaller matching er-
ror. This means that the more dots of a certain colour, the
better is the corresponding normalization method. The size
of the dots represents the magnitude of the difference be-
tween the scores. In this case it can be observed that there
are more blue dots, which suggests a better performance of
the rubber sheet model. However, given the small differ-
ence between the scores and the fact that no matching error
occurs (all dots are under the EER threshold, represented
by a dashed yellow line) it can be stated that both meth-
ods lead to identical performance. The False Non Match
Rate (FNMR) when the False Match Rate (FMR) equals
0.01 (FNMR@FMR=1%) is zero in both cases.

6.2. Dilated images

For the dataset used in these experiments, images with a
dilation ratio over 0.475 are considered to be dilated. Unlike
the previous case, for this range of dilation ratios, the differ-

Figure 10: Score difference (rubber sheet model score minus
biomechanical model score) for genuine comparisons considering
all dilated images. In this case, the bigger number and size of
the dots associated with the biomechanical model when the dila-
tion ratio is high, shows that the proposed normalization method
works better.

ence in deformation calculated by the biomechanical model
and the rubber sheet model is quite noticeable. Figure 3,
which represents a dilation ratio increase up to ρ = 0.75,
is a clear example of this. In the case of dilated images,
the results obtained when using the biomechanical model
clearly outperform those obtained when using the rubber
sheet model.

As observed in Figure 10, when the dilation ratio is high,
considerably better genuine scores are obtained when using
the biomechanical model (most of the dots are red and big).
Scores that are in error when using the rubber sheet model
(those above the dashed yellow line, which represents the
EER threshold of the rubber sheet model), would move be-
low the threshold when using the proposed model provided
that the score difference is high enough. This fact turns into
lower false reject rates. Consider, e.g., the circled red dot
with score equal to 0.42 when using the rubber sheet model.
Since the score difference for such a dot equals 0.12, the
score obtained with the biomechanical model is 0.35. This
score value is under the EER threshold of the rubber sheet
model.

Table 3 shows the matching error rate
(FNMR@FMR=1%) for the whole dilation dataset, as
well as the two subsets of images with low and high
dilation ratios. As previously stated, results from the
biomechanical model clearly outperform those from
the rubber sheet model, with an improvement of the
FNMR@FMR=1% from 5.4% to 2% on average when
using all the dilated images in WVU-FDS. Results obtained
when differentiating between low and high dilation ratios
clearly show that the majority of errors are caused by those



images with a high dilation ratio. Since images are matched
against gallery images that exhibit normal dilation ratio in
the experiments, this is equivalent to stating that most errors
occur when matching iris images with highly different
dilation ratios. It is in this case where the proposed method
is found to considerably improve the matching accuracy,
where the FNMR@FMR=1% decreases by 10.5%.

Table 3: Matching error rates (FNMR@FMR=1%) obtained us-
ing Masek’s method with the whole dilation data set as well as the
subsets with low (0.475 ≤ ρ < 0.575) and high (ρ ≥ 0.575)
dilation ratios.

Data set Size FNMR@FMR=1%
(subjects, images) Rubber sheet Biomechanical

Dilation data set (40, 234) 5.4±1.1 % 2±0.6 %(complete)

Low dilation ratio (40, 193) 1.2±0.2 % 0±0 %
High dilation ratio (17, 41) 19.4±1.4 % 8.9±1.7 %

7. Conclusions and future work
In this paper, a biomechanical inspired formulation is

used to define a new iris normalization scheme. The pro-
posed normalization scheme is compared to the classical
rubber sheet model and demonstrated to result in superior
accuracy when matching iris images exhibiting significant
differences in dilation levels. The FNMR@FMR=1% im-
proves from 5.4% to 2% when using the biomechanical
model on WVU-FDS. While linear sampling schemes, such
as the one performed by the classical rubber sheet model,
are applicable for small variations in pupil size, they are not
robust enough to counteract the degradation of iris recog-
nition performance when matching iris images with signifi-
cantly different dilation ratios. Instead, nonlinear sampling
schemes are to be used. This result is reasonable consider-
ing the nonlinear nature of iris dynamics.

Future work would include the modification of the
biomechanical model to account for pupil constriction, and
a thorough analysis of the robustness of the proposed nor-
malization method to inaccuracies in the segmentation pro-
cess.
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