
  

Quality Metrics Influence on Iris Recognition Systems Performance 
 

 
 Inmaculada Tomeo-Reyes Judith Liu-Jimenez  

 University Group for Identification Technologies Electronic Technology Department 
 Carlos III University of Madrid  Carlos III University of Madrid 
 Avda. Mar Mediterraneo, 22. Office 1.23  Avda. Universidad, 30. Office 1.2.F.09 
 E-28918 - Leganes (Madrid), SPAIN  E-28911 - Leganes (Madrid), SPAIN 

 itomeo@ing.uc3m.es  jliu @ing.uc3m.es 
 

 Ivan Rubio-Polo Belen Fernandez-Saavedra  
 University Group for Identification Technologies IDTestingLab 

 Carlos III University of Madrid  Carlos III University of Madrid 
 Avda. Mar Mediterraneo, 22. Office 1.23  Avda. Gregorio Peces Barba, 1. Lab. 1.0.B.08 
 E-28918 - Leganes (Madrid), SPAIN  E-28919 - Leganes (Madrid), SPAIN 

 irubio@ing.uc3m.es mbfernan@ing.uc3m.es 
 

 
Abstract - When working with biometrics, regardless of the 
modality, it is essential to consider data quality, as it can limit 
the accuracy of recognition systems.  In this context, the 
assessment of biometric samples quality by defining quality 
metrics can be used to enhance the performance and 
functionality of a biometric system.   In this work, the influence 
of ISO/IEC 29794-6 quality metrics on iris recognition systems 
performance has been analysed.  To carry out the analysis, 
the corresponding metrics have been calculated according to 
the computational method detailed in the standard and a 
quality score has been obtained.  Then, in order to determine 
the metrics influence, an open source iris recognition system 
as well as one publicly available dataset, have been used.  
Results show to what extent an iris recognition system can be 
affected by input images quality, and also the most influential 
quality metrics on recognition accuracy.   
  

Index Terms — Biometrics, iris recognition, quality metrics, 
sample quality 

 
 

I.  INTRODUCTION 
 

There are two main reasons why image quality 
assessment is of paramount importance when working with 
automated biometric systems.  On the one hand, it affects 
systems performance, and on the other hand, it is basic to 
improve interoperability. 

It is a fact that poor input data quality adversely impacts 
biometric systems performance, as it is responsible for error 
rate increasing and can be a great weakness of certain 
implementations.  There are different ways of reducing the 
impact of poor data quality, but many of them depend on 
considering effective methods of automated data quality 
measurement.  This way, in order to enhance biometric 
systems performance and functionality, the assessment of 
biometric samples quality by defining quality metrics should be 
considered.   

Regarding interoperability, it is also a fact that there is a 
lack of interoperability of quality scores, which makes data 
exchange between systems difficult.  Being this the situation, 
the need of biometric samples quality assessment is clear. 

Specifically, in the framework of iris recognition systems, 
the term quality should not be only associated to the 
acquisition settings of the sample, such as image resolution or 
bit depth, but also to image capture from imperfect sources, as 
occurs for example with subject blinking or gaze deviation, or 
under non-proper conditions.  Currently, a draft version of an 
international standard exists, aimed to assess the quality of 
iris images.  This standard, named ISO/IEC 29794-6 
(Biometric sample quality – Part 6: Iris image) [1], was initiated 
by Working Group 3 of ISO Subcommittee SC 37 
(Biometrics) in January 2009. 

 In ISO/IEC 29794-6, terms and quantitative 
methodologies relevant to the characterization and 
assessment of the quality of iris images used in biometric 
recognition are defined.  More in detail, the current working 
draft of the standard (SC 37 N4302) defines 19 covariates (10 
image acquisition covariates and 9 subject covariates) and 20 
quality metrics for assessing the utility of an iris image.  
Among the 20 quality metrics, 17 are computed from a single 
image, and 3 are computed from two images.  These quality 
components are quantitative measures of image‐specific or 
subject‐specific covariates.  Once obtained the quality metrics, 
in order to indicate the overall image quality, either a vector of 
quality components or a scalar quality score can be used.   

One of the main inconveniences of ISO/IEC 29794-6 is 
that the performance assessment of specific quality algorithms 
is out of its scope.  Being this the situation, it is fundamental to 
determine the quality metrics influence on iris recognition 
systems to enhance their performance and functionality.  Such 
analysis has been carried out in this paper.  In order to do it, 
quality metrics defined in ISO/IEC 29794-6 have been 
calculated according to the computational method detailed in 
the standard.  In the cases in which no definition is given, an 
alternative method proposed by authors has been considered.  
After the computation, a quality score (overall scalar computed 
from a vector of quality components) has been obtained.  This 
process is explained in detail in Section 2 of the document.  
After that, to determine the metrics influence, an open source 
iris recognition system as well as one publicly available 
dataset, have been used.  Both the experiments and the 
corresponding results are described in Section 3 of the paper.  
Finally, conclusions and future working lines are provided. 



  

II.  IMAGE QUALITY DESCRIPTION AND 

CALCULATION   
 

In this section of the document, an overview about image 
quality is provided.  After that, all steps followed from the 
single quality metrics calculation to the quality score obtaining 
are explained in detail.   

 
A.  Quality covariates vs.  quality metrics 

 
Part 6 of ISO/IEC 29794 establishes requirements on 

covariates that affect iris recognition performance.  According 
to the standard, a covariate can be defined as the individual 
variable or parameter that either directly or when interacting 
with other covariates affects iris recognition, being the 
influence measured in terms of error rate.  Specifically, 19 
covariates have been identified as the most influential on 
recognition accuracy.  Among the 19 quality covariates, 10 of 
them are related to the design and implementation of the 
image acquisition equipment and environment (the so-called 
iris acquisition covariates), and the remaining 9, are related to 
subject-specific or subject-influenced/controlled factors (the 
so-called iris subject covariates).   

On the one hand, iris acquisition covariates are based on 
the fixed design parameters of the acquisition device or the 
operation of the device in accordance with the following 
requirements: 

1.  Satisfactory resolution and sharpness. 
2.  Sufficient contrast in the iris to support information 

extraction and template generation.   
3.  Positioning of the subject’s iris in the camera’s field of 

view with good focus while minimizing or eliminating 
impairments, such as specular reflections and optical 
aberrations. 

On the other hand, iris subject covariates can be inherent 
in each subject, and so, not directly controlled/modifiable by 
them (e.g. eye colour or intrinsic iris-pupil contrast), but they 
can also be the result of a controlled action of the subject (e.g. 
occlusion due to eyelash/eyelid or head rotation). 

Apart from the quality covariates, 20 quality metrics are 
defined in the standard.  These quality components are mostly 
quantitative measures of the image‐specific and 
subject‐specific covariates.  Among the 20 quality metrics, 17 
are computed from a single image, and 3 are computed from 
two images.  In this paper, only the metrics computed from a 
single image will be analysed, as authors consider that quality 
metrics computed from two images are more related to 
matching results and their objective lies in checking the 
behaviour of the overall recognition system, considering any 
database, independently of the number or images per user 
existing.   

In Table 1, both iris acquisition and iris subject covariates 
are indicated, together with the quality metric or metrics that 
better quantify them.  In some cases, no quality metric is 
applicable to the corresponding covariate.  When working with 
iris acquisition covariates, this occurs when the metrics are not 
such, but a parameter that depends on the capture device 
configuration (e.g. distribution of energy across certain 
wavelength range in the case of Dedicated illumination or 
modulation transfer function of the imaging system in the case 
of Optical resolution).  When working with iris subject 
covariates, the fact that no metric is applicable only happens 

in the case of Eye Wear, as it implies the use of external 
elements such glasses or lenses.  Although the standard does 
not define any quality metric to quantify this covariate, it is 
feasible to quantify the effect of potential eyeglasses 
reflections by calculating Usable iris area, as done with 
Occlusion due to specular reflections covariate.  Regarding 
contact lenses, it is not necessary to automatically detect soft 
contact lenses, as they do not affect iris images.  On the 
contrary, patterned contact lenses, which hide iris tissue, shall 
be detected and prohibited.  Hard contact lenses should be 
also detected and Usable iris area computed to determine if 
the iris image is affected or not.       

 
TABLE I 

IRIS COVARIATES AND CORRESPONDING QUALITY METRICS 
DEFINED IN ISO/IEC 29794-6 (SC 37 N4302) [1] 

 COVARIATE QUALITY METRIC 
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 Dedicated illumination Not applicable 

Defocus Sharpness 

Gray scale density Gray scale utilization 

Motion blur Motion blur 

Occlusion due to specular 
reflections 

Usable iris area 

Optical distortion Not applicable 

Optical resolution Not applicable 

Pixel aspect ratio Not applicable 

Sensor noise Signal-to-Noise ratio 

Spatial sampling rate Not applicable 

IR
IS
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U

B
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C
T
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V
A

R
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T
E
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Eye colour 
Iris-sclera boundary contrast        
Iris-pupil boundary contrast 

Eye wear Not applicable 

Intrinsic iris-pupil contrast Iris-pupil boundary contrast 

Intrinsic iris-sclera contrast Iris-sclera boundary contrast 

Iris shape 
Iris boundary shape 

Pupil boundary shape 

Occlusion due to eyelash/eyelid Usable iris area 

Off-axis orientation – head 
rotation 

Frontal head rotation - roll 

Off-axis orientation – sight 
direction 

Azimuth frontal gaze                   
Polar frontal gaze 

Pupil size Pupil to iris ratio 

 

B.  Quality metrics calculation 
 
Once known both the iris covariates and the 

corresponding quality metric(s), the calculation method 
considered for each of the metrics will be explained.   

In Table II, the computational methods defined in ISO/IEC 
29794-6 (SC 37 N4302) to calculate the different quality 
metrics are shown.  As it can be observed, there are some 
metrics for which no computational method is defined yet.  In 
these cases, authors suggest a method, which has been used 
to carry out the experiments, and which is explained in detail 
below.   



  

TABLE II 
QUALITY METRICS COMPUTATION ACCORDING TO ISO/IEC 29794-6 (SC 37 N4302) [1] 

QUALITY METRIC COMPUTATIONAL METHOD 

Frontal gaze - azimuth Not defined 

Frontal gaze - polar Not defined 

Frontal head rotation – roll 
If the entire ocular region is visible in the image, FRONTAL_HEAD_ROTATION shall be computed as the 
angle measured between the horizontal and the line drawn between the left and right corners of the eye 
(medial and lateral canthus) 

Gray scale utilization Not defined 

Iris image authenticity Not defined 

Iris boundary shape IRIS_BOUNDARY_SHAPE should be measured as eccentricity of iris-sclera boundary 

Iris-pupil boundary contrast 
IRIS_PUPIL_BOUNDARY_CONTRAST shall be computed as the average grey level differences at the iris-
pupil boundary locations along a horizontal row of pixels, which include the pupil centre.  It shall be the 
arithmetic mean of differences in grey scale values at the left and right iris-pupil boundaries 

Iris-pupil concentricity IRIS_PUPIL_CONCENTRICITY=    
RADIUSIRIS

YYXX irispupilirispupil

_

22   

Iris-sclera boundary contrast 
IRIS_SCLERA_BOUNDARY_CONTRAST shall be computed as the average grey level differences at the 
iris-sclera boundary locations along a horizontal row of pixels, which include the iris centre.  It shall be the 
arithmetic mean of differences in grey scale values at the left and right iris-sclera boundaries 

Iris size IRIS_SIZE = IRIS_RADIUS  or  IRIS_SIZE = (4 * IRIS_AREA) / IRIS_PERIMETRE  if no circularity assumed 

Margin 

MARGIN = 1 – 0.25 1 – 0.25 * ( LEFT_MARGIN_DEFICIENCY + RIGHT_MARGIN_DEFICIENCY +  

                                                    + UP_MARGIN_DEFICIENCY + DOWN_MARGIN_DEFICIENCY ) 

where  

X_MARGIN_DEFICIENCY = 











0,6  X_MARGIN  if 0

0,6  X_MARGIN  if 0,6 / X_MARGIN - 1   being X = LEFT / RIGHT  

Y_MARGIN_DEFICIENCY = 











0,2  Y_MARGIN  if 0

0,2  Y_MARGIN  if 0,2 / Y_MARGIN - 1   being Y = UP / DOWN  

and 

LEFT_MARGIN = max {0, XIRIS_CENTER / IRIS_SIZE -1 } 

RIGHT_MARGIN = max {0, [IMAGE_WIDTH – (XIRIS_CENTER + IRIS_SIZE)] / IRIS_SIZE} 

UP_MARGIN = max {0, [IMAGE_HEIGHT – (YIRIS_CENTER + IRIS_SIZE)] / IRIS_SIZE} 

DOWN_MARGIN = max {0, YIRIS_CENTER / IRIS_SIZE -1 } 

Motion blur Not defined 

Pupil boundary shape PUPIL_BOUNDARY_SHAPE = 
PERIMETREPUPIL

AREAPUPIL

_

_2    

Pupil to iris ratio 
PUPIL_IRIS_RATIO=PUPIL_SIZE/IRIS_SIZE 

where PUPIL_SIZE calculation is analogous to IRIS_SIZE calculation 

Sharpness According to Daugman’s Focus Score [2] 

Signal-to-Noise ratio 
SIGNAL_TO_NOISE = 0,95 * |maximum(intensityLevel) – minimum(intensityLevel)| 

where intensityLevel is computed for the iris region only 

Usable iris area Not defined 

 

The method proposed by authors to calculate the quality 
metrics not defined by ISO/IEC 29794-6 (SC 37 N4302) is 
shown next: 

 Frontal gaze – azimuth and polar 

According to the standard, FRONTAL_GAZE_AZIMUTH 
and FRONTAL_GAZE_POLAR estimate the direction of 
displacement between the optical axis of the eye and the  

 
optical axis of the camera, considering the azimuthal and 
polar angles respectively.  In both cases, the measure 
includes both head angular orientation and eye-gaze 
angle relative to the head.  When this kind of deviation is 
produced, the pupil and iris boundaries are not circular 
but elliptical.  Specifically, in the azimuthal case, the 
major axis of the ellipse coincides with or is close to 
Cartesian axis “Y”, and the minor axis coincides with or is 



  

close to Cartesian axis “X” (see Figure 1a).  On the other 
hand, in the polar case, the major axis of the ellipse 
coincides with or is close to Cartesian axis “X”, and the 
minor axis coincides with or is close to Cartesian axis “Y” 
(see Figure 1b).  Being this the situation, authors 
calculate the azimuthal/polar angle according to the 
ellipse’s foci. 

In the case of the ellipse, the eccentricity value is 
between 0 and 1.  When the eccentricity is 0, the foci 
coincide with the center point and the resulting figure is a 
circle.  As the eccentricity tends toward 1, the ellipse 
elongates.  Considering that the minimum elongation of 
the ellipse corresponds to an azimuthal/polar angle of 0º, 
and the maximum corresponds to an azimuthal/polar angle 
of 90º, the exact azimuthal/polar angle can be directly 
calculated from the distance between the foci. 

 

 
Figure 1. Gaze deviation  

(a) azimuthal case and (b) polar case 

 Gray scale utilization  

According to the standard under analysis, 
GRAY_SCALE_UTILIZATION must check that the overall 
iris image has a dynamic range of at least 256 grey levels, 
allocating at least 8-bits with a minimum of 7 bits of useful 
information (just valid iris portion of the image).  An image 
with a good quality indicates a properly exposed image, 
with a wide, well distributed spread of intensity values.  In 
order to check if the distribution of intensity values is 
appropriate, authors have decided to use kurtosis.  In 
statistics and probability theory, kurtosis is defined as a 
measure of the peakedness of the data.  High kurtosis 
values represent more concentrated data, whereas low 
values represent more scattered data.  In this sense, low 
kurtosis values are desired to guarantee good 
GRAY_SCALE_UTILIZATION. 

 Iris image authenticity  

Iris image authenticity shall measure the likelihood that 
the iris image was captured from a live/real human eye.  In 
this case, authors have decided not to include this metric 
in the quality analysis for several reasons.  First of all, it is 
difficult and even almost impossible to find public 
databases of artificial or fake iris images nowadays.  
Secondly, authors consider that image authenticity is not 
directly related to image quality, but more with anti-
spoofing and liveness detection mechanisms, which is a 
very wide field.  Finally, this metric is still not clearly 
defined in ISO/IEC 29794-6 (SC 37 N4302).  
Nevertheless, some alternatives to determine iris image 
authenticity can be consulted in [3-7]. 

 Motion blur 

MOTION_BLUR measures the degree of distortion in the 
image due to motion.  Such motion can occur as a 

consequence of either the subject relative motion or the 
camera relative motion during exposure time.  In order to 
express MOTION_BLUR, both the relative magnitude 
(strength) and the direction (angle) of the image motion 
have to be calculated.  The computation method followed 
in this case is the one explained in [8].  Since there are two 
measurable components of motion blur, instead of 
considering the two different metrics separately, authors 
have decided to calculate a single value, given higher 
weight to magnitude, as considered more influential than 
direction.   

 Usable iris area 

USABLE_IRIS_AREA is the percentage of iris portion of 
the image that is not occluded by eyelids, eyelashes or 
specular reflections due to illumination, ambient 
conditions, eyewear or nearby facial features.  In order to 
calculate this metric, eyelids, eyelashes and reflections are 
detected and masked and then, the percentage of non-
masked iris area related to the total iris area is computed. 

After knowing how to compute all quality metrics, it is 
necessary to determine how to use them in order to determine 
the iris image quality.    

 
C.  Image quality calculation 

 
Once calculated all quality metrics, in order to determine 

the iris image quality from them, two options are possible.  On 
the one hand, it is possible to produce a scalar quality score 
indicating the overall image quality or, on the other hand, a 
vector composed of a set of quality metrics can be considered 
(see Table III).   

TABLE III 
QUALITY METRICS VECTOR FORMAT  

VECTOR POSITION QUALITY METRIC 

1 Overall quality scalar value 

2 Frontal gaze - azimuth 

3 Frontal gaze - polar 

4 Frontal head rotation – roll 

5 Gray scale utilization 

6 Iris image authenticity (*) 

7 Iris boundary shape 

8 Iris-pupil boundary contrast 

9 Iris-pupil concentricity 

10 Iris-sclera boundary contrast 

11 Iris size 

12 Margin 

13 Motion blur 

14 Pupil boundary shape 

15 Pupil to iris ratio 

16 Sharpness 

17 Signal-to-Noise ratio 

18 Usable iris area 

(*) Iris image authenticity will not be computed (see Section 2.B) 



  

It is clear that a vector of quality components has more 
information than an overall scalar value.  However, the vector 
itself cannot be directly used to evaluate how input images 
quality impacts automatic iris recognition systems 
performance.  Being this the situation, it is necessary to map 
the N‐element quality vector to a scalar overall quality value.   
In order to do that, different techniques (e.g. weighted sum, 
neural network, SVM, etc.) can be used to combine the 
metrics and compute a single scalar iris quality score.  In this 
case, authors have decided to consider a weighted sum of the 
different quality metrics (excluding Iris image authenticity), 
choosing the weight values according to each metric influence 
(see Section III – Experiments and results). 

In this case, the vector of quality components will be a 
vector of integers with length 18.  According to ISO/IEC 
29794-1 (Biometric sample quality – Part 1: Framework) [9], 
the overall iris quality (first element of the quality vector), shall 
be in the range [0,100], being 0 the lowest value and 100 the 
highest value.  A value of 255 represents a failed attempt to 
assign a quality score, either because an error has occurred, 
or just because the quality component has not been 
computed.  The rest of vector elements shall be coded in 
one‐byte unsigned integer.  In order to calculate the 
weighted sum of the different quality metrics, authors have 
decided to map also these values in the range [0,100], as 
done with the overall iris quality value. 

 
 

III.   EXPERIMENTS AND RESULTS  
 

In this section of the document, two main objectives are 
considered: determining to what extent iris recognition 
systems performance can be affected by input images quality 
and determining the most influential quality metrics on iris 
recognition accuracy.   

In order to carry out the experiments, OSIRIS [10] system 
has been used.  OSIRIS (Open Source for Iris) is an open 
source iris recognition system developed in the framework of 
the BioSecure Network of Excellence.  It is inspired by 
Daugman works [11] and it consists basically of three steps: 
segmentation, feature extraction and classification.  The 
segmentation part uses the circular Hough transform and an 
active contour approach to detect the contours of the iris; the 
feature extraction part uses Gabor filters to obtain the feature 
vectors and, finally, the classification part is based on Gabor 
phase demodulation and Hamming distance classification.    

All tests have been performed using Iris Challenge 
Evaluation (ICE) 2005 database [12], a publicly available 
database developed by the National Institute of Standards and 
Technology (NIST).  The database consists of 2953 grayscale 
eye images of 132 people, acquired with an LG2200 camera.  
Each image has a size of 640x480 pixels.  The database can 
be divided into two sub-databases: one for images of the right 
iris (1425 iris images from 124 people) and another one for 
images of the left iris (1528 iris image of 120 people).  In most 
cases, images of the right and left irises are acquired at the 
same time.  In this specific case, the right iris photographs of 
ICE 2005 have been considered.  The reason why ICE 
dataset was chosen is that the performance of OSIRIS 
reference system (version 2.01) was tested with the right iris in 
ICE 2005 database.  In addition, most of the covariates 
described in ISO/IEC 29794-6 can be found in this dataset, so 

evaluating iris recognition performance according to the 
quality of the dataset images is possible.   

 
A.  General analysis 

 
In this section, a general analysis about the quality 

metrics influence on iris recognition performance is carried 
out. 

In order to determine which quality metrics are the most 
influential on recognition accuracy, the following process has 
been followed: 

1.  For each quality metric, quality values are represented 
versus intraclass Hamming Distance (HD) considering 
all ICE images. 

The reason why only intraclass HD is considered to carry 
out the analysis is that it is easier to check how quality 
affects when considering images of the same user.  When 
comparing images from different users, both quality and 
differences in the feature vector affect, so it is more difficult 
to determine which influence is due to quality and which is 
due to the difference between features. 

2.  Values are fitted to a straight line by using the method 
of least squares. 

The method of least squares assumes that the best-fit 
curve of a given type is the curve that has the minimal 
least square error from a given set of data.  The reason 
why a straight line and not any other higher-order curve is 
considered to fit data is that the line slope provides all the 
information needed.  When working with recognition 
systems, it is a fact that the more input images quality, the 
lower intraclass HD difference between samples.  Being 
this the situation, the tendency of quality metrics values 
(leaving outliers aside) with respect to intraclass distance 
is decreasing (see an example of this, considering just one 
quality metric and one user, in Figure 2).  The strength of 
such tendency can be easily observed by analyzing the 
best-fit straight line slope.    
 

Figure 2. IRIS_PUPIL_CONCENTRICITY vs. intraclass HD for 
all ICE images of the same user (user ID: 288766)   

 
3.  The straight line slopes associated with all quality 

metrics are compared. 
According to the previous point, the quality metrics with the 
highest slope can be considered the most influential. 
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After carrying out the abovementioned analysis, the 
conclusion obtained is that the most influential quality metrics 
when ICE is used to test OSIRIS are sharpness, motion blur 
and gaze deviation (either Frontal gaze – azimuth and polar 
and Frontal head rotation).  In all these cases, the decreasing 
tendency of quality values with respect to intraclass distance 
was more noticeable than in the case of the rest of metrics.  
Consequently, the highest weight values were given to these 
metrics when computing the weighted sum to calculate the 
single scalar iris quality score.  Besides, the least influential 
quality metrics can be also identified with the proposed 
analysis method.  Such metrics are those in which the 
variation of quality values with respect to intraclass HD is 
almost uniform (straight line slope ~ 0).  They are Iris and pupil 
boundary shape and Image margin.  The smallest weight 
values were given to these metrics.  Finally, intermediate 
quality values were given to the quality metrics left. 
 
B.  ICE performance  

 
Once identified the influence of the different quality 

metrics and calculated the overall scalar quality score, the 
influence of ICE images quality on OSIRIS performance can 
be determined. 

In order to determine the accuracy of a biometric system, 
error rates have to be measured.  There are, among others, 
two key error rates: false acceptance rate (FAR) and false 
rejection rate (FRR).  When these two rates are equal, the 
common value is referred to as equal error rate (EER).  The 
lower the equal error rate value, the higher the accuracy of the 
biometric system.  In this paper, the performance of OSIRIS is 
characterized by FAR, FRR and EER.  To evaluate the 
influence of the quality metrics, three cases have been 
analysed:  

1.  Entire dataset used. 
This case is the worst case possible, as all images, 
regardless of their quality, are considered.   

2.  Images in which all quality metrics are over the 
threshold. 

In this second case, apart from the system performance, 
authors check if the threshold values specified in ISO/IEC 
29794-6 (SC 37 N4302) are effective.  Threshold values 
specified in the standard are considered in those cases in 
which the metric is defined, and threshold values chosen 
by authors according to the general analysis (previous 
subsection) are considered otherwise.  Once defined all 
thresholds, only images in which all quality metrics are 
over the corresponding threshold, are included in the 
image subset.   

3.  Images with quality score higher than 0.75. 
The last case is the one in which the overall scalar quality 
score previously calculated is used.  By obtaining the error 
rates in this case, authors check what happens if not only 
the minimum quality requirements (defined by the 
threshold) but something more restrictive is considered.   
Based on the results shown in Figure 3, we notice, as 

expected, a performance increasing trend: as quality of the 
data increases so does performance.  As observed, the worse 
EER is obtained in the case in which the whole database is 
used.  Once some minimum quality requirements are 
considered, the EER value improves.  The best EER value is 

obtained in the case in which the quality requirements are the 
most restrictive.   

Though predictable in some sense, the results obtained in 
this paper are quite interesting, because with the quality score 
obtained, it is possible to select images which can achieve a 
desired level of performance.  Taking such images as a 
reference, it would be also possible to determine the quality 
characteristics that the input images of an iris recognition 
system with specific performance constraints should have. 

 

Figure 3. OSIRIS performance considering different quality 
requirements of ICE input images 

 
 

IV.  CONCLUSIONS 
 

In this paper, the influence of ISO/IEC 29794-6 (SC 37 
N4302) quality metrics on OSIRIS iris recognition system 
performance has been analysed.  To carry out the analysis, 
the corresponding metrics have been calculated according to 
the computational method detailed in the standard and a 
quality score has been obtained.  Then, in order to determine 
the metrics influence, OSIRIS recognition system and ICE 
dataset, both publicly available, have been used. 

Apart from analysing the current Working Draft version of 
ISO/IEC 29794-6, something very useful in terms of the 
Standard development, results show to what extent an iris 
recognition system can be affected by input images quality.  
Besides, the most (and also the least) influential quality 
metrics on recognition accuracy have been identified.  
Sharpness, motion blur and gaze deviation have been 
confirmed as the most influential factors, so special care must 
be taken regarding this parameters when capturing iris 
samples. 

Another important fact to mention is that with the quality 
score obtained, it is possible to select images which can 
achieve a desired level of performance.  Taking such images 
as a reference, it would be possible to determine the quality 
characteristics that the input images of an iris recognition 
system with specific performance constraints should have. 

Finally, although a good analysis of 29794-6 (SC 37 N4302) 
has been done in this paper, it is important to consider that 
this version of the standard is only a Working Draft.  For this 
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reason, not all quality metrics are defined and potential 
methods to compute the non-defined quality metrics had to be 
proposed by authors.  Being this the situation, the standard 
under study has to evolve until being definitive, and so, a 
similar analysis, or even more exhaustive, will have to be done 
in the future, once a more stable version appears.   
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