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Abstract 
 

Iris based identity verification is highly reliable but it can also be subject to attacks. Pupil 
dilation or constriction stimulated by the application of drugs are examples of sample 
presentation security attacks which can lead to higher false rejection rates. Suspects on a 
watch list can potentially circumvent the iris based system using such methods. This paper 
investigates a new approach using multiple parts of the iris (instances) and multiple iris 
samples in a sequential decision fusion framework that can yield robust performance. Results 
are presented and compared with the standard full iris based approach for a number of iris 
degradations. An advantage of the proposed fusion scheme is that the trade-off between 
detection errors can be controlled by setting parameters such as the number of instances and 
the number of samples used in the system. The system can then be operated to match security 
threat levels. It is shown that for optimal values of these parameters, the fused system also has 
a lower total error rate. 
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1. Introduction 

 
The iris is a highly accurate biometric trait and iris recognition systems have been proven to 

be highly reliable [1]. Detection errors such as false acceptances and false rejections are very 
low for these systems; however, they can be subject to security attacks that increase them. By 
increasing the false rejection rate, for example, a suspect can prevent being matched to a 
watch list and bypass an iris based system. Sample presentation attacks are common 
approaches used to degrade the performance of iris recognition in this manner.  
 

In general, when biometric systems are in operation and the threat level changes, 
controlling the trade-off between detection error rates can reduce the impact of an attack. 
Traditional unimodal biometric systems do not allow achieving this, since just a single 
threshold can be varied. In multimodal or fused systems, on the contrary, this can be achieved 
through systematic adjustment of a set of parameters. Recent investigations [2, 3] have 
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addressed these issues using text-dependent speech. Results show that in a sequential decision 
fusion architecture with multiple classifiers (instances) and multiple attempts (samples) it is 
possible to control the trade-off between false accept and false reject errors at each classifier 
using the number of instances and the number of samples considered in the architecture. The 
fact that decision level fusion [4, 5] is considered in the above-mentioned work, has the 
advantage that single modality based systems can combine quite easily even if these systems 
have been developed independently, possibly by different companies, and internal workings 
are not made public, something very common in the case of many commercial off-the-shelf 
(COTS) biometric matchers. There is, however, some trade-off through loss of information in 
the threshold operation that makes each individual decision but this is not critical if individual 
systems working with single modalities have been designed to make near-optimal use of all 
information available to them. These considerations are also valid in the case of multiple 
classifiers designed using the same modality but different instances containing potentially 
different information. For example, voice recognition systems can be text-dependent and 
work with different text (of the utterance) as different instances. Iris recognition systems may 
work with the left and right iris or with parts of a given iris as each instance.  

 

This paper is aimed at investigating the viability of adapting and applying a multi-instance, 
multi-sample sequential decision fusion architecture to iris recognition in the context of 
preventing sample presentation attacks. How sample presentation attacks, and more 
specifically, obfuscation attacks, affect iris recognition systems is explained in section 2. 
Details of the fusion architecture can be found in Section 3. Section 4 describes the 
methodology used to evaluate the fused system performance and the results.  

 
2.  Security Threats to Biometric Systems: Sample Presentation Attacks 
 

When working with biometric systems, it is very important to consider the potential 
security threats, as they can lead to security failures. Security failures can occur from intrinsic 
limitations of the system, or due to explicit attacks. Any biometric system, regardless of the 
trait, comprises at least four different subsystems: data acquisition, pre-processing, feature 
extraction and comparison [6]. Each subsystem has different points of attack, with one or 
more potential methods of exploitation of each. Some of the early work by Ratha et al. [7] 
identified eight possible points of attack. Further work by Jain et al. [8] sought to refine this 
approach. Wayman [9] added the storage block to the general biometric schema, allowing a 
more detailed analysis of the different points of attack. Combining elements of previous 
works, Bartlow and Cukic [10] extended this research by adding three new components: 
administrative supervision, information technology environment and token presentation. 
Common Criteria [11, 12], an international standard used for computer security, particularly 
by governments, also defines an extended general biometric schema that includes storage and 
three different administrative subsystems, apart from the four basic subsystems. Figure 1 
shows a biometric system at the subsystem level and highlights the potential attack points 
according to Common Criteria. The general threats that need to be considered when 
evaluating biometric systems for vulnerabilities are shown in the adjacent table. The outline 
numbers correspond to locations identified by the numbers in Figure 1. A complete 
description of the specific kind of attacks corresponding to each threat can be found in [12]. 
Among all possible threats shown in Figure 1, this research work will focus on user/capture 
threats (type 2), also known as attacks at the user interface level or sample presentation 
attacks. 
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1 User Threats 

2 User/Capture Threats       
(Sample presentation attacks)

3 Capture/Extraction Threats 

4 Extraction/Comparison 
Threats during Verification 

5 Extraction/Template Storage 
Threats during Enrolment 

6 Template Storage Threats 
7 Template Retrieval Threats 

8 Administrator/Resource 
Manager Threats 

9 User/Policy Management 
Threats 

10 Policy Management Threats 

11 Threats to Policy 
Management/Portal 

12 Portal Threats 

13 Threats to all hardware 
components 

14 Threats to all software or 
firmware components 

15 Threats to all connections 
(including network threats) 

 

Figure 1. General threats for biometric systems  
 

2.1 Sample presentation attacks: overview 
 

In general, any attempt by an attacker to break into the system by presenting an altered 
biometric sample can be considered a sample presentation attack. These attacks can be 
categorized into three main groups [6]: 

 

(a) Impersonation. In impersonation attacks impostors pose themselves as an authorized user 
in an attempt to intrude the system. If the impersonation is casual, the identity to attack is 
randomly chosen and the impostor’s biometric characteristics are not modified. If the 
impersonation is targeted, a specific identity is attacked. In this case, the impostor may 
modify his own behaviour (e.g. voice, signature or gait) or physiology (e.g. face or hand) 
in an attempt to match the identity under attack. Targeting an identity which is known to 
be easier to impersonate (e.g. weak biometric template) or whose biometric characteristics 
are known to be similar to the impostor’s (e.g. twin) are other options. 

(b) Spoofing. Spoofing attacks involve the presentation of a counterfeit biometric that does 
not come from a live person. The usage of fake or artificial traits (e.g. gummy finger, 
recorded voice, etc.) or non-live samples (e.g. dismembered finger) from legitimate users 
are typical spoofing attacks [13, 14].  

(c) Obfuscation or disguise. Obfuscation attacks occur when the attacker deliberately changes 
his biometric characteristic in order to avoid being recognized by the system. Intentionally 
presenting a noisy, poor-quality or null biometric sample that may not match the template, 
using disguises or plastic surgery in the case of face, or applying techniques to obliterate 
fingerprints (e.g. abrasion, cutting or burning) are common examples of obfuscation.  

 

The main problem for an impostor to successfully perform impersonation or spoofing 
attacks is that it is necessary to have a good copy or some prior knowledge of the biometric 
trait corresponding to the identity to be attacked. The difficulty of this depends strongly on the 
trait. Obfuscation attacks, on the contrary, can be easily carried out regardless of the trait and 
no previous knowledge is generally required. Apart from that, these attacks can be used to 
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illegitimately gain access to a system by circumventing the main and most secure subsystem 
and taking advantage of less secure fallback mechanisms if they exist. In such case they can 
be considered as dangerous as impersonation or spoofing. According to this, the necessity of 
minimizing the impact of obfuscation attacks is clear and so, we will focus on these attacks in 
this paper. 
 
2.2 Obfuscation attacks and iris recognition 
 

Iris patterns are unique regardless of any genetic relationship between their possessors. 
Even the two iris patterns of the same individual are unique and structurally different. The 
human iris is also stable and not changeable, except in cases of injury. Because of these two 
important characteristics, uniqueness and stability, iris recognition is considered a highly 
reliable method of identification and/or verification. Iris recognition is in fact one of the most 
accurate biometric techniques [1], but in spite of that, obfuscation attacks degrade its 
performance [15]. Threats associated with obfuscation attacks in iris recognition can be 
grouped into three categories: 

 

(a) Intentional presentation of a noisy or poor-quality sample. The first possibility involves 
intentionally presenting a noisy or poor-quality biometric sample that may not match the 
attacker template in the database. Blinking, deviating the gaze and using glasses are 
typical ways to achieve this. It is important to note that not all cases in which noisy or 
poor quality iris samples are captured are potential disguise attacks. Both noise and poor 
image quality are common problems in iris recognition systems and a lot of research work 
has already been done to improve the performance of these systems under such conditions 
[16]. However, unlike the architecture proposed in this research work, methods developed 
for this purpose are not aimed to prevent obfuscation attacks. 

(b) Artificially provoked iris alterations. Given the anatomic characteristics of the iris, 
altering it in any way is extremely difficult. However, two types of iris alterations can be 
easily provoked: mydriasis and miosis. Mydriasis is an excessive dilation of the pupil 
arising from disease, trauma or the use of drugs or alcohol. It can also be artificially 
provoked by using a mydriatic agent in the form of eyedrops. Non-elastic deformations of 
the iris occur as the pupil dilates. Miosis, on the other hand, is an excessive constriction of 
the pupil which can also be artificially provoked by using a miotic agent. The effect of 
pupil dilation on iris recognition has been addressed before [1, 17]; however, this research 
did not extend to extreme cases of pupil dilation or constriction (either pathological or 
artificially provoked) or changes in the threat level. 

(c) Occlusion of the iris. The iris can be easily occluded by using cosmetic lenses, which are 
contact lenses with a pattern printed or painted on them. Total occlusion can be achieved 
by using colour, fantasy or prosthetic lenses. As they are opaque, the corresponding iris 
texture becomes unavailable. Partial occlusion is also possible by using lenses in which 
only a black inner circle simulating the pupil has been printed or painted. 

 

In order to demonstrate how these attacks affect iris recognition performance, an iris 
recognition algorithm inspired by Daugman’s works [18] has been used here (see subsection 
4.2). Images from the three previous categories have been used to calculate the detection error 
rates corresponding to the system threshold under normal operating conditions (see Figure 2). 
In each case, the corresponding detection error trade-off (DET) curve has been added to 
illustrate the fact that reducing the impact of the attack is not possible by just varying a single 
threshold of the base system because it results in a trade-off. A multi-part, multi-sample 
architecture can be used for that purpose instead. Results in Figure 2 clearly illustrate the false 
rejections increment typical from obfuscation attacks. 
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Figure 2. Detection error rates for different obfuscation attacks considering 
system threshold under normal operating conditions  

 
3. Multi-biometric Fusion Approach 
 

A multi-instance, multi-sample sequential decision fusion architecture recently developed 
by Nallagatla and Chandran [2, 3], allows controlled trade-off between false accept and false 
reject errors. This architecture is particularly suited to users of commercial systems who may 
have a number of different systems at their disposal but access only to decisions rather than 
scores, features or internal algorithms. The architecture has so far been tested with short 
speech utterances. In this paper, it is further developed and applied to an iris recognition 
system, with special emphasis on preventing sample presentation attacks. 

 
3.1 Multi-part fusion scheme  
 

In the context of iris recognition, instance usually refers to each of the irises of an 
individual. In this research work, this concept is generalized, and different parts of the same 
iris image are considered as the different instances. Three main reasons motivate this decision: 

 

(a) Deliberate iris changes provoked to perform obfuscation attacks are applicable to both 
irises in most cases, so using them as the two only instances does not seem to be useful.  

(b) Since the number of instances is one of the key factors to control detection errors, the 
possibility of considering more than just two inputs (left and right irises) makes the 
system more versatile and errors easier to control.  

(c)  Although a part based approach is mainly used here to make the base architecture robust 
to obfuscation attacks, other advantages of iris recognition using parts such as dealing 
with noise [19], cancellable iris biometrics [20] or efficiency improvement [21] also apply. 

There are many schemes for dividing an iris into parts. Concentric rings of equal width, as 
shown in Figure 3, have been chosen in this paper. Iris templates are built for each ring and 
classifiers for the different rings form the ‘n’ stages of the sequential decision fusion 
architecture. In this multi-part fusion scheme, the user’s claim is only accepted if the 
decisions from all stages are accept. This is equivalent to applying an AND decision fusion 
rule to determine the acceptance of a claim. This fusion method effectively reduces the false 
acceptances; however, it can increase the number of false rejections (see Table 1).  
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Figure 3. Multi-part fusion: concentric rings used as parts 

 
3.2 Multi-sample fusion scheme  
 

In order to reduce false rejections, multiple iris samples can be used. These samples are 
divided into rings in the same manner. In the multi-sample fusion scheme, up to ‘m’ samples 
can be presented at any given stage (part classifier) if the decision is reject. If the maximum 
number of allowable samples (‘m’) is exceeded, the claim is rejected. Acceptance of a claim 
at any given stage is equivalent to an OR decision fusion rule among samples. This fusion 
method helps in reducing false rejections, but it can increase false acceptances since the 
impostor is given additional chances for verification (see Table 1).  
 
3.1 Multi-part, multi-sample fusion scheme: proposed architecture  

 
The proposed architecture, resulting from combining the multi-part and multi-sample fusion 

schemes, can be seen in Figure 4. It consists of ‘n’ classifiers arranged sequentially and allows 
up to ‘m’ samples presentation (dashed line) in case any of the user’s claims is rejected by the 
system (d=0).  

 

 
 

Figure 4. Multi-part, multi-sample decision fusion scheme 
 
False acceptance rate (FAR) and false rejection rate (FRR) of each of the fused systems in 

terms of false acceptance and false rejection for each independent attempt (α and ρ) when 
considering ‘n’ stages and ‘m’ sample presentation attempts can be calculated according to the 
equations shown in Table 1 [2]. 
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Table 1.  Detection error rates of fused schemes: multi-part, multi-sample and both 

Fusion scheme Detection Error Rates: FAR (α) and FRR (ρ) 

Multi-part 
௙௨௦௘ௗߙ ൌ  ௡ߙ

௙௨௦௘ௗߩ ൌ ߩ ൅ ሺ1 െ ߩሻߩ ൅ ሺ1 െ ߩሻଶߩ ൅ڮ൅ ሺ1 െ  ߩሻ௡ିଵߩ

(1)

(2)

Multi-sample 
௙௨௦௘ௗߙ ൌ  ߙ݉
௙௨௦௘ௗߩ ൌ  ௠ߩ

(3)

(4)

Multi-part and multi-sample 
௡௠ߙ ൌ ሺ݉ߙሻ௡ 

௡௠ߩ ൌ ௠ߩ ൅ ሺ1 െ ௠ߩ௠ሻߩ ൅ڮ൅ ሺ1 െ  ௠ߩ௠ሻ௡ିଵߩ

(5)

(6)

 
From the above equations it is clear that when considering multi-part fusion, since α is less 

than 1, the resultant FAR (αfused) decreases multiplicatively with the number ‘n’ of classifiers 
or parts used. The fused FRR, however, increases as the addition of the term ሺ1 െ   ߩሻ௡ିଵߩ
from 1 to ‘n’ – in fact equation (2) can be reduced to ρfused ≈  nρ when ρ << 1 but such 
simplification is not appropriate when dealing with obfuscation attacks, since false rejections 
are significantly increased with respect to normal operating conditions. According to this, 
since multiplicative changes are faster than additive ones, the reduction in the FAR is faster 
than the increase in the FRR. Just the opposite occurs in the case of multi-sample fusion – the 
resultant FRR decreases multiplicatively with the number ‘m’ of attempts, while the FAR 
increases additively. When combining both behaviours, by choosing appropriate values of ‘n’ 
and ‘m’, a desired trade-off between decision error rates can be achieved that reduces the 
impact of obfuscation attacks. It should be noted that error rates represented by α and ρ in 
these equations are between 0 and 1; however, percentages will be used from Section 4 on. 
 
4. Tests and Results 
 
4.1 Database  
  

A total of 1476 iris images, acquired at a resolution of 640 x 468 pixels, constitute the iris 
dataset used to perform the tests. Images were taken from 59 different participants with ages 
between 16 and 70 years old. The sensor used for the data collection is the IG-AD100, a dual 
eye auto-focus camera which works in the near infrared (NIR) wavelength. It has native built-
in passive, behavioural and dynamic countermeasures for eye liveness detection, but they 
were deactivated with the aim of avoiding any restriction when capturing the data.  

 

For generating noisy and poor quality samples, images were obtained with the effects of 
wearing glasses, blinking and deviating the gaze to any direction (up, down, left and right). 
For artificially provoked iris alterations, a miotic/mydriatic agent in the form of eyedrops was 
instilled to participants. Three different types of cosmetic lenses (colour, fantasy and 
prosthetic) were used to completely occlude the iris. In the case of partial occlusion, images 
were synthetically created from the normal conditions image subset by increasing the pupil 
radius from Rp to 1.75·Rp (this value can be adjusted for more/less severe degradation). 
However, the same effect could have been achieved by using lenses in which only a black 
inner circle simulating the pupil has been printed or painted. Examples of all these cases can 
be seen in Figure 5. 

 

Although the initial dataset size was larger than the 1476 images initially stated, around   
30% of the images were discarded because of segmentation errors. The increase in 
segmentation errors is an important effect of sample presentation attacks that also degrades 
recognition performance, but these images are avoided here because the robustness of the 
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Figure 6. Iris recognition base algorithm 

 
4.3 Results 
 

To evaluate the effectiveness of the proposed multi-part, multi-sample fusion scheme and 
justify the final result, each individual scheme is first evaluated. The EER from the train 
subset when using the entire iris is used as a reference. The train subset is also used to fix the 
threshold of each individual classifier, this being the EER-based threshold. Since the 
threshold of each classifier is fixed in advance, DET curves cannot be calculated. Instead, 
different values of detection error rates are obtained by progressively increasing the number 
of parts/classifiers (multi-part) or samples (multi-sample). These values are then connected 
together to indicate which values belong to the same experiment.  

 

Results for multi-part fusion are obtained by progressively increasing the number ‘n’ of 
rings or parts. Four different values of ‘n’ have been considered in all cases (n = 2, 3, 4 and 6), 
being the width of each ring equal to the width of the whole normalized iris divided by ‘n’ 
(see Figure 3). Rings are always processed in the same order, inner to outer. The value of ‘n’ 
defines the maximum number of classifiers in the sequential chain. In the case of multi-
sample fusion, a maximum of three sample presentations (m = 3) are allowed to verify the 
user in all cases but in the case of partial occlusion, in which only two sample presentations 
(m = 2) are possible since there are no more samples available in the database. Samples are 
chosen randomly from the test data set, and by repeatedly and randomly selecting sets of ‘m’ 
samples, average error rates and standard deviations are estimated and presented in Tables 3-5. 
To be consistent with the multi-instance experiment, the only classifier existing in this scheme 
(n = 1) corresponds to the inner ring of the iris (the nearest to the pupil). Finally, results 
obtained when integrating the multi-part and multi-sample schemes are calculated following 
the previous requirements. For clarity purposes, just the cases in which halves and thirds of 
the iris (n = 2, 3) are used as parts are considered in Figures 7c - 9 c, although all cases (n = 2, 
3, 4 and 6) have been taken into account in Tables 3-5. Results for all three categories of 
obfuscation attacks are presented and analysed next.   

 
A. Intentional presentation of a noisy or poor-quality sample 

 

In all three cases within this category (glasses, eyelid obstruction and gaze deviation), 
results when considering multi-part fusion show the same behaviour: while FAR decreases 
with the number of parts, FRR increases (see Figure 7 a.1-a.3). According to equations (1) 
and (2), since the FAR decreases multiplicatively, its reduction is faster than the increase in 
the FRR. The fast decreasing of the FAR is the main reason why no more than 3 stages are 
usually required to reduce false acceptances to values very close to 0. An analogous behaviour 
can be observed in Figure 7 b.1-b.3 for an increasing number ‘m’ of samples (m = 1, 2 and 3) 
in the multi-sample fusion scheme. In this case, the more samples considered the lower value 
of the FRR, being the FRR reduction faster than the FAR increasing. It may also be noted that 
a maximum of 3 samples is enough to reduce the FRR values to almost 0. 
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Results obtained when integrating the multi-part and multi-sample schemes are shown in 

Figure 7 c.1-c.3. It is clear that in the three cases under study, the trade-off between detection 
errors can be controlled by changing the number of parts and samples, decreasing the FRR 
and improving robustness against the attacks. Apart from that, lower error rates can be 
achieved than in the case of the non-fused base algorithm using the whole iris. It is necessary 
to take into account, however, that since samples are chosen randomly from the test data set 
results change from execution to execution. To guarantee that results obtained are statistically 
significant, average error rates and standard deviations have been estimated by repeatedly 
selecting random sets of ‘m’ samples. Such results are presented in Table 3 for the best 
selection of parts and samples. The selection criteria is mainly based in minimum total error 
rate achieved, however, if highly similar results are obtained for different numbers of parts 
and samples, the case with the minimum number of them is considered provided that the 
standard deviation does not increase considerably.   

 

  

(a.1) (b.1) (c.1) 

  

(a.2) (b.2) (c.2) 

  
(a.3) (b.3) (c.3) 

Figure 7. Detection error rates of (a) multi-part fusion, (b) multi-sample fusion and (c) multi-part and 
multi-sample fusion for noisy/poor quality samples (glasses, eyelid obstruction and gaze deviation) 
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Table 3. Noise/poor quality: average error rates (%) with standard deviation for best cases 

Degradation 
Error
rate 
 (%) 

Whole iris   
(reference) 

Best selection of 
parts and samples 
(m,n): (parts, samples) 

Glasses 

FAR 0.746 ± 0.18 

1/2 iris (2,3) 0.512 ± 0.09 
1/3 iris (2,3) 0.716 ± 0.19 
1/4 iris (3,3) 0.307 ± 0.08 
1/6 iris (3,3) 0.244 ± 0.08 

FRR 2.130 ± 2.73 

1/2 iris (2,3) 0 ± 0 
1/3 iris (2,3) 0.087 ± 0.61 
1/4 iris (3,3) 0.087 ± 0.61 
1/6 iris (3,3) 0 ± 0 

Eyelid 
obstruction 

FAR 4.016 ± 0.87 

1/2 iris (2,3) 2.263 ± 0.51 
1/3 iris (2,3) 2.564 ± 0.40 
1/4 iris (3,3) 1.066 ± 0.29 
1/6 iris (3,3) 1.587 ± 0.34 

FRR 8.005 ± 5.98 

1/2 iris (2,3) 4.461 ± 4.53 
1/3 iris (2,3) 0.385 ± 1.68 
1/4 iris (3,3) 0.154 ± 1.08 
1/6 iris (3,3) 0.846 ± 2.42 

Gaze deviation  

FAR 7.8246 ± 1.12 

1/2 iris (2,2) 5.215 ± 0.87 
1/3 iris (3,3) 7.864 ± 1.12 
1/4 iris (3,3) 8.487 ± 1.03 
1/6 iris (4,3) 6.033 ± 0.80 

FRR 9.400 ± 6.77 

1/2 iris (2,2) 6.467 ± 5.39 
1/3 iris (3,3) 6.133 ± 5.58 
1/4 iris (3,3) 6.000 ± 4.59 
1/6 iris (4,3) 13.33 ± 5.27 

 
When analysing in detail the results shown in Table 3, it can be noticed that regardless of 

the parts size (rings width), no more than 3 parts are usually required to achieve the best result 
possible. This fact is quite promising, since avoiding the use of the whole iris has some 
advantages like efficiency improvement or protection of the trait in a cancellable iris 
biometrics scenario. In the case of glasses and eyelid obstruction, better results that are 
statistically significant are obtained for all possible part sizes. In the case of using glasses, the 
main reason for this to happen is that different samples are usually affected in a different way 
by glasses (e.g. a slight head tilt can noticeably change the position of reflections), so using 
several samples helps minimizing the effect of the degradation. Using only certain iris parts 
can also help, especially if those parts affected by reflections are not used. Something similar 
occurs with iris obstruction. In the case of gaze deviation, worse results are obtained and 
lower error rates than the reference cannot always be achieved – see e.g. error rates when 
using fourths and sixths of the iris. When iris is off-axis all parts are affected (the most 
affected region depends on the deviation direction) and it is easy that all samples also are, so 
good results cannot be guaranteed just by using this architecture. 

 
B. Artificially provoked iris alterations 

 

When dealing with artificially provoked iris alterations, the behaviour of the individual 
multi-instance and multi-sample schemes is the same as in the case of noisy or poor quality 
samples, as it can be observed in Figure 8 a.1-a.2 and b.1-b.2. Results obtained when 
integrating the multi-part and multi-sample schemes are shown in Figure 8 c.1-c.2 and 
complemented by values in Table 4.  
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Table 4. Artificially provoked alterations: average error rates (%) with standard deviation for best cases 

Degradation 
Error 
rate 
 (%) 

Whole iris   
(reference) 

Best selection of 
parts and samples 
(m,n): (parts, samples) 

Miosis 

FAR 4.235 ± 1.23 

1/2 iris (2,3) 3.446 ± 0.73 
1/3 iris (2,3) 4.219 ± 1.01 
1/4 iris (3,3) 2.153 ± 0.53 
1/6 iris (4,3) 1.817 ± 0.39 

FRR 5.800 ± 6.38 

1/2 iris (2,3) 1.200 ± 3.27 
1/3 iris (2,3) 1.700 ± 3.77 
1/4 iris (3,3) 1.900 ± 3.94 
1/6 iris (4,3) 3.500 ± 5.00 

Mydriasis 

FAR 2.073 ± 0.48 

1/2 iris (2,3) 2.557 ± 0.42 
1/3 iris (3,3) 1.044 ± 0.32 
1/4 iris (3,3) 1.246 ± 0.32 
1/6 iris (4,3) 1.181 ± 0.27 

FRR 2.750 ± 4.11 

1/2 iris (2,3) 0.417 ± 1.82 
1/3 iris (3,3) 11.83 ± 3.67 
1/4 iris (3,3) 20.83 ± 4.35 
1/6 iris (4,3) 21.66 ± 6.37 

 
Comparing the multi-part, multi-sample results with the reference, it is clear that robustness 

against this type of obfuscation attacks can also be achieved, with lower error rates that are 
statistically significant, especially in the case of miosis. In the case of mydriasis, this is only 
possible when using at least half of the iris as each of the parts. Preliminary results show that 
for mydriasis, better results can be achieved without using the whole iris when using the 

  

(a.1) (b.1) (c.1) 

   
(a.2) (b.2) (c.2) 

Figure 8. Detection error rates of (a) multi-part fusion, (b) multi-sample fusion and (c) multi-part and 
multi-sample fusion for artificially provoked iris alterations (miosis and mydriasis)   
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second and third rings of the iris (out of 3) instead of the first and second rings. The reason 
why this happens is that the non-elastic deformations of the iris when the pupil excessively 
dilates degrade most severely the ring nearest to the pupil. Thus, ring order can also be 
considered to further improve the results. 
 

C. Occlusion of the iris 
 

The last case to be analysed is the case of partial and total iris occlusion when using lenses. 
When occlusion is partial, the behaviour of the individual multi-instance and multi-sample 
schemes is the same as the one observed up to now. For total occlusion, results also seem to 
follow the expected trend; however, some incongruities can be observed like the fact that 
smaller parts of the iris provoke noticeably less false rejection errors than bigger parts (see 
results for sixths and halves of the iris in Figure 9 a.2). This incongruent behaviour can also 
be perfectly observed in the case of the multi-part and multi-sample integrated scheme in 
Figure 9 c.2. Results obtained when using a higher number of parts are worse than those 
obtained when using less. Since cosmetic lenses are opaque, the corresponding iris texture 
becomes unavailable, making recognition unfeasible. In this regard, the poor results obtained 
were expected.  

 

 
Table 5 shows the error rates obtained for partial occlusion for the best selection of parts 

and samples. As in previous cases, it can be noticed that regardless of the parts size, no more 
than 3 parts are required to achieve good results. Since only two samples are available from 
the database and both of them are used, standard deviation of the data is 0. Using only two 
samples does not allow enough control over the trade-off between FAR and FRR, and better 
results seem likely to be achieved by considering at least one more sample (m = 3). In spite of 
this fact, better results than in the reference case are achieved for halves and fourths of the iris. 

  
(a.1) (b.1) (c.1) 

  
(a.2) (b.2) (c.2) 

Figure 9. Detection error rates of (a) multi-part fusion, (b) multi-sample fusion and (c) multi-part and 
multi-sample fusion for occlusion (partial and total)  
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Although part of the iris texture is unavailable in this case, as long as there is enough usable 
information to be processed, obtaining such results is possible. 

 
Table 5. Occlusion: average error rates (%) with standard deviation for best cases 

Degradation 
Error 
rate 
 (%) 

Whole iris  
(reference) 

Best selection of 
parts and samples 
(m,n): (parts, samples) 

Partial 
occlusion 

FAR 2.578 ± 0.18 

1/2 iris (2,2) 1.002 ± 0 
1/3 iris (2,2) 0.689 ± 0 
1/4 iris (2,2) 1.378 ± 0 
1/6 iris (3,2) 2.224 ± 0 

FRR 2.696 ± 1.46 

1/2 iris (2,2) 3.571 ± 0 
1/3 iris (2,2) 1.786 ± 0 
1/4 iris (2,2) 1.786 ± 0 
1/6 iris (3,2) 3.571 ± 0 

Total 
occlusion 

FAR 17.604 ± 3.27 N/A 
FRR 25.429 ± 14.01 N/A 

 
5. Conclusions 
 

Iris recognition systems are vulnerable to sample presentation attacks of the obfuscation 
type that increase false rejection rates. In this paper a multi-part, multi-sample sequential 
decision fusion architecture is applied to an iris recognition system to reduce the effect of 
such attacks. The system is tested with real data for degradations such as miosis, mydriasis, 
glasses, eyelid obstruction, gaze deviation and occlusion with lenses. The proposed 
architecture is demonstrated to provide robustness under obfuscation attacks with lower error 
rates and better control over the trade-off between FAR and FRR.  
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