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Abstract

In order to effectively use iris patterns in biometric recognition, there is value

in knowing how bit errors in iris codes are distributed. In this work, the iris is

considered in a part-based framework as rings and sectors. A mean normalised

bit error is defined as the bit error averaged over the entire part and over an

ensemble of images. The distribution of this error for genuine comparisons

is investigated as a function of radius (ring) and angle (sector) for a range

of factors more comprehensively than previous studies of consistency of iris

codes. Two iris recognition systems and three data sets are used. The effect

of residual segmentation errors after automated segmentation is checked, and

masks are manually refined to obtain segmentation error free data for further

investigation. The effect of factors such as capture sensor, resampling, input

iris image resolution, filter type and encoding scheme, and changes in pupil size

is systematically investigated. Results confirm the finding in previous works

that the pupillary and limbic boundaries are more error-prone than the middle

region of the iris. This study further confirms that this V-shaped radial trend

is not significantly disturbed by any of the above factors other than pupil size

changes. Both pupil dilation and constriction result in increased bit errors which

no longer show a dip in the middle region of the iris. The distribution of errors as

a function of angle is approximately uniform regardless of the factor investigated

but shows a small decrease towards the sectors near the eye corners.
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1. Introduction

The richness of the iris texture and its variability across individuals make it

a very reliable biometric trait for personal authentication [1]. However, texture

information within the iris is not uniform, and bits in an iris code differ in their

consistency from one sample to another for the same identity.

Different approaches have been proposed to investigate the differences be-

tween regions of the iris in their contributions to iris recognition performance.

An early approach by Pereira and Veiga [2] analysed all possible combinations

of five out of ten concentric iris rings to improve the performance of an iris

recognition system. If rings are numbered from the pupillary boundary out to

the limbus as 1 to 10, the best performance was obtained when using rings 2,

3, 4, 5 and 7. To complete the analysis [3], they divided the iris into a greater

number of concentric rings and used a genetic algorithm to determine those that

led to the best performance. Results showed that the selected rings were mainly

located in the central regions of the iris.

Hollingsworth et al. [4] demonstrated the existence of fragile or inconsistent

bits, which are defined as bits that have a substantial probability of changing

from a 0 to a 1 or vice versa in iris codes of the same iris. Given a number of

test images, the percentage of images in which a particular bit of the iris code

changes measures the inconsistency of that bit. A bit is said to be fragile at p%

consistency threshold if it changes in at least p% of the images. Using a consis-

tency threshold of 40%, best results were obtained for rings 5 to 12 out of twenty

(or 2 to 6 out of ten approximately) for rings numbered in ascending order from

the pupillary boundary out to the limbus. This information was exploited by

masking the fragile bits before the comparison stage in order to increase the

recognition accuracy. The authors of this work also found that certain bits are

consistent even across out-of-focus and noisy images. Rathgeb et al. [5] used
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the previous work as a reference and computed a mask in which the consistency

at each bit position was defined as the difference between the estimated prob-

abilities of occurrence of intra-class and inter-class errors. Tan and Kumar [6]

exploited the temporal intra-class information in the feature space to derive a

stability map which indicates the consistency of bits in iris codes.

Broussard et al. [7] and Hilal et al. [8] calculated the recognition accuracy

achieved by different iris regions in order to evaluate their contribution to the

comparison decision. In [7], rings 4 to 8 out of ten were reported to be the most

consistent, whereas in [8], rings 2 and 3 out of ten performed the best, followed

by rings 1, 4 and 5. In both cases rings are numbered in ascending order from

the pupillary boundary out to the limbus.

Results reported in all previous approaches seem to indicate that texture

information located in the central region of the iris is more consistent, and the

maximum consistency is reached closer to the pupillary boundary than to the

limbus. However, some differences exist in the results obtained for rings near

the pupillary boundary which should be further investigated.

Inconsistencies in different regions of the iris could be influenced by factors

other than texture information. Potential causes of inconsistencies, such as seg-

mentation [4, 8], normalisation [8], template and filter size [7], filter type [4],

and iris alignment [4] have been previously investigated considering different

criteria. Fragile bits [4], probabilities of occurrence of intra-class and inter-class

errors [5], recognition accuracy [7, 8] or decidability [8] are some of these criteria.

Although experiments confirmed that these factors affect consistency, the lack

of a common testing framework makes it difficult to compare the different effects

in a quantitative manner. A methodology is proposed here to comprehensively

analyse the consistency of bits of different iris regions including additional fac-

tors, such as changes in capture sensor, resampling parameters, resolution, and

changes in pupil size.

In this work, irides are divided into radial partitions or rings as well as

angular partitions or sectors for error analysis. Statistics of bit errors calculated

using Hamming distance are computed for genuine and impostor distributions as
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functions of radius and angle. The results provide insight into the most effective

manner in which iris texture can be used considering the spatial distribution of

bit errors in iris codes. Three data sets and two iris recognition systems are

used in the experiments.

This paper is organized as follows. In Section 2, the proposed error analysis

is described in detail. The data sets and iris recognition systems used in the

experiments are described in Section 3. A list of factors that affect the distri-

bution of bit errors within the iris is presented in Section 4, together with tests

to quantify their effect. Conclusions are outlined in Section 5.

2. Proposed Error Analysis Method

An iris recognition system has four main stages: data acquisition, pre-

processing, feature extraction, and comparison (see Fig. 1). Once a 2D image

of the eye has been captured using an iris sensor, the iris region is isolated from

other structures in its vicinity during the segmentation and masking stages.

The resultant iris region is then unwrapped into a rectangular block of fixed

dimensions during the normalisation stage. The normalised iris image is then

subjected to filtering, and the ensuing phasor responses are encoded into a bit

string referred to as an iris code. In the comparison stage, the dissimilarity be-

tween two iris codes is computed. The mask generated during the pre-processing

stage is used to prevent degraded regions from being compared. Both the iris

code and the mask can be viewed as binary vectors. It is assumed here that

a mask value is 1 where a bit is retained and 0 where a bit is masked away.

Figure 1: Typical stages of iris recognition.
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The error analysis presented in this research is based on the number of bits that

differ between the iris codes of different iris samples.

Different approaches can be used to implement the different stages of an iris

recognition system. In this paper, the binary iris codes and masks required to

compute the bit errors are obtained from two open source iris recognition sys-

tems, OSIRISv4.1 [9] and USITv1.0.3 [10]. Details of these systems are provided

in Section 3.

The normalised bit error between two iris codes {C1,C2} whose mask bit

vectors are denoted {M1,M2} is defined as the number of bits that differ be-

tween the unmasked portions of the iris codes as a fraction of the total number

of bits that are compared. This dissimilarity metric is also known as normalised

Hamming distance or fractional Hamming distance. The normalised bit error

is calculated using equation (1), where ⊕ and & are the bitwise-XOR and the

bitwise-AND operation respectively, and || represents the L1 norm.

ε =
|(C1⊕C2) & (M1 & M2)|

|M1 & M2|
(1)

The value of ε is computed for different iris parts (rings and sectors), obtained

as functions of radius and angle. Radial partitioning results in R concentric

rings of the same width and angular partitioning results in S sectors of equal

size numbered as shown in Fig. 2. The iris code associated with each part is

a fraction of the complete iris code, properly selected by masking. Since the

number of bit errors is divided over the total number of bits that are compared,

it is possible to use and compare filters that generate iris codes of different sizes

from the same region.

Subscripts r and θ are used to denote, respectively, rings and sectors, and

superscripts i and j are used to identify the specific ring (i = 1, . . . , R) and

sector (j = 1, . . . , S). According to this notation, εir denotes the normalised

number of bit errors in ring i, and εjθ denotes the normalised number of bit

errors in sector j. Since databases differ in the number of identities or users and

the number of iris samples for each, the previously defined normalised number of
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bit errors per ring and sector are averaged for the number of comparisons of any

given database. The mean normalised bit error per ring and sector denoted ε̄ ir

and ε̄ jθ respectively, is thus calculated as the average of the normalised bit error

for a region when computed over a number of samples. The mean normalised bit

error can be used to identify the iris regions with higher consistency and thus

contributing relatively more to better performance for genuine comparisons.

(a) (b)

Figure 2: Iris partitioning. (a) Radial partitioning. (b) Angular partitioning.

3. Experimental Results

Three data sets and three iris recognition systems are used in the experiments

to investigate the consistency of bits in iris codes. These are described in detail

in this section. The mean normalised bit error calculated with equation (1) for

different rings and sectors using a reference data set and iris recognition system

is also analysed.

3.1. Iris Data Sets

Three different data sets are used to compute the mean normalised bit error.

These are ICE 2005 [11], CASIA-IrisV4-Thousand [12] and an in-house data set

known as Iris Degradations Data Set (IDDS). From these data sets, ICE 2005

is used as the reference in all the experiments.
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3.1.1. ICE 2005

The ICE 2005 data set was provided by the National Institute of Standards

and Technology (NIST) for the iris recognition challenge problem known as

Iris Challenge Evaluation (ICE) 2005. It comprises a total number of 2953 iris

images captured from 132 different participants at a resolution of 640 × 480

in the near infrared (NIR) wavelength. The data set includes images of right

irides (1425 images from 124 users) and left irides (1528 images from 120 users),

acquired at the same time in most cases. The sensor used for the data collection

was the LG EOU 2200.

3.1.2. CASIA-IrisV4-Thousand

CASIA-IrisV4-Thousand contains 20000 iris images (10 images per eye) from

1000 subjects. All images are stored with resolution 640×480. The sensor used

for the data collection was the IKEMB-100 camera by IrisKing, a dual-eye iris

camera which works in the NIR wavelength. The main sources of intra-class

variations are eyeglasses and specular reflections. The subset of CASIA-IrisV4-

Thousand used in this work contains 500 users. Only the left iris images are

used. After removing those images with eyeglasses, a total data subset of 3424

left iris images is obtained.

3.1.3. IDDS

The Iris Degradations Data Set or IDDS is an in-house database that in-

cludes a total of 2183 iris images acquired at a resolution of 640 × 480 using

the iris sensor IG-AD100, a dual eye auto-focus camera which works in the

NIR wavelength. The database is divided into four main subsets: images cap-

tured under normal conditions, images affected by quality degradation due to

local noise (eyelid obstruction, gaze deviation and glasses), images affected by

changes in pupil size, and images affected by occlusion. In this work only the

images acquired under normal conditions and those affected by changes in pupil

size are used (see Fig. 3).
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– Normal conditions (IDDS:NC).

This subset includes a total of 354 iris images captured under normal con-

ditions in a controlled environment (normal room illumination). Images

were taken from 59 different participants who provided 3 images per eye.

It is used to check the effect of the capture sensor on the distribution of

bit errors.

– Drug-induced and light-induced pupil dilation (IDDS:Dilation-drugs and

IDDS:Dilation-light).

The subsets used to check the effect of pupil dilation on the number and

distribution of bit errors comprise 292 iris images captured from 38 differ-

ent eyes. In the case of drug-induced dilation or mydriasis, the mydriatic

agent tropicamide was instilled to participants in the form of eye drops.

Images affected by light-induced pupil dilation were obtained by turning

the ambient lighting off. The ratio between the pupil radius and the iris

radius, or pupil-to-iris ratio, is higher than 0.515 for all irides affected by

pupil dilation included in these subsets.

– Drug-induced and light-induced pupil constriction (IDDS:Constriction-drugs

and IDDS:Constriction-light).

In order to analyse the effect of pupil constriction on the distribution of bit

errors within the iris two subsets are used, which include 417 iris images

captured from 69 different eyes. Drug-induced constriction or miosis was

provoked by instillation of the miotic agent pilocarpine, whereas images

affected by light-induced pupil constriction were obtained by pointing a

visible light source directly at the participants’ eyes. The pupil-to-iris ra-

tio is lower than 0.265 for all irides affected by pupil constriction included

in these subsets.

The analysis of factors other than segmentation should provide insight into

bit errors that are directly related to the iris texture and its encoding, and should

not be influenced by errors introduced owing to segmentation. For this reason,

only trimmed data sets composed of images which are free from segmentation
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(a) (b) (c) (d)

Figure 3: IDDS sample images affected by changes in pupil size with pupil-to-iris ratio (ρ)

values. (a) Drug-induced dilation (ρ = 0.75), (b) light-induced dilation (ρ = 0.58), (c) light-

induced constriction (ρ = 0.22), and (d) drug-induced constriction (ρ = 0.20).

errors are used in the experiments. Information on the segmentation-error-free

data is summarized in Table 1.

Table 1: Size of segmentation-error-free subsets used in the experiments.

Data set Iris classes Images

ICE 2005 150 1232

CASIA-IrisV4-Thousand 468 2555

IDDS:NC 118 354

IDDS:Dilation-drugs 19 251

IDDS:Dilation-light 20 41

IDDS:Constriction-drugs 11 218

IDDS:Constriction-light 60 199

3.2. Iris Recognition Systems

Tests are carried out using two different open source iris recognition systems:

OSIRISv4.1 [9] and USITv1.0.3 [10]. Since OSIRISv4.1 uses ICE 2005 as the

reference data set as is used in this work, it is used as a reference system here.

It should be noted that the iris recognition systems are not optimised for

each of the data sets used. For the sake of reproducibility, minimum changes to

the original implementations have been made, and these correspond to changes

needed to make results comparable. While this might result in increased bit

errors, it does not affect the analysis of the consistency of bits in iris codes.
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3.2.1. OSIRIS v4.1

OSIRISv4.1 (Open Source for Iris version 4.1) is an open source iris recog-

nition system based on Daugman’s works [13]. The segmentation stage uses

a Viterbi algorithm [14] and Daugman’s rubber-sheet model [13] is used to

normalise the image. The feature extraction stage is based on Gabor phase

demodulation. Each iris code is saved as a binary image of size W × (n ×H),

where W ×H is the size of the normalised image, and n is the number of Gabor

filters. In fact, there are n/2 Gabor filters, with real and imaginary parts, but

OSIRISv4.1 considers the real and imaginary parts as two independent filters.

In the comparison stage, irides are compared using the normalised Hamming

distance. However, not all the pixels of the iris code are used to perform the

comparison. For flexibility purposes, a matrix of 256 application points is used

to indicate which pixels are considered. The EER of OSIRISv4.1 with ICE 2005

using the parameters described in [9] is 1.10%.

Some modifications were made to compute the mean normalised bit error. In

the original implementation, the effective size of the iris code is 256 bits. Since 12

iris parts (rings and sectors) are used to perform the experiments, the size of the

iris code of each of the parts would be only 21 bits. To obtain better estimates

of the mean normalised bit error, the entire iris code is used instead of the 256

application points. Other parameters were configured in OSIRISv4.1 as follows.

The size of the normalised image is 512 × 72. Following the recommendations

in [15], feature extraction is performed using a bank of filters consisting of the

imaginary part of 6 Gabor filters with three different frequencies and two scales.

The size of the iris code obtained as a result of binary quadrature encoding is

then 512× 72× 6. Since the number of bit errors is normalised by dividing over

the total number of bits that are compared, the size of the iris codes does not

necessarily need to be the same for all systems. Further, iris code representation

can be adapted for any system to guarantee that bits within a ring or sector

remain in the same ring or sector regardless of the number of filters used.
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3.2.2. USIT v1.0.3

USIT (University of Salzburg Iris Toolkit v1.0) is a Windows/Linux soft-

ware package for iris recognition, made publicly available together with [10].

It comprises different algorithms for iris pre-processing, feature extraction, and

comparison. In this case, the starting point are the same normalised iris images

as those used with OSIRISv4.1, which have a size of 512×72. Each normalised iris

image is divided into stripes to obtain 9 one-dimensional signals, each one aver-

aged from the pixels of 8 adjacent rows (note that in the original implementation

of USIT the size of the normalised image is 512 × 64 and 10 one-dimensional

signals are obtained from averaging the pixels of 5 adjacent rows). In order to

check the effect of the filter type and encoding on the distribution of bit errors

within the iris, two conventional algorithms are employed in the feature extrac-

tion stage: a re-implementation of the algorithm proposed by Masek [16] based

on 1-D log-Gabor feature extraction, and a re-implementation of the algorithm

proposed by Ma et al. [17] based on a quadratic spline wavelet transform.

– Log-Gabor based feature extraction. In this approach, the nine 1-D inten-

sity signals mentioned above are convolved with a 1-D log-Gabor filter.

The phase response at each pixel specifies the coordinates of a phasor in

the complex plane. During phase encoding, the angle of each phasor is

quantised to one of the four quadrants, setting two bits of phase informa-

tion. As a result, a 512× 2× 9 bit iris code is obtained.

– Quadratic spline based feature extraction. A 1-D quadratic spline wavelet

transform is applied in this case to the nine 1-D intensity signals mentioned

above. Position sequences of detected maxima and minima (local sharp

variation points) from two specific sub-bands serve as features. More

specifically, sequences of 1s and 0s are assigned to the iris code until new

maxima and minima are found. A 512× 2× 9 bit iris code is obtained as

a result.
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3.3. Distribution of Bit Errors using the Reference Database and Iris Recogni-

tion System

The mean normalised bit error between iris codes of different iris parts can

be calculated using equation (1) for any given database and iris recognition

system. In this research, bit errors are calculated for 12 radial parts or rings

(ε̄ ir , i = 1, . . . , 12) and 12 angular parts or sectors (ε̄ jθ , j = 1, . . . , 12), as defined

in Fig. 2. The mean normalised bit error obtained for the whole reference data

set (ICE 2005) using the reference iris recognition system (OSIRISv4.1) is shown

in Fig. 4 for the genuine and impostor distributions.

According to Fig. 4, the distribution of the mean normalised bit error ob-

tained from impostor comparisons can be considered uniform and almost equal

to 0.5 for radial partitions or rings, as well as angular partitions or sectors.

This result is consistent with the fact that if two irides are from different identi-

ties, they are expected to have statistically independent iris codes [18] and the

expected fraction of agreeing or disagreeing bits between two independent iris

codes is 0.5. For genuine comparisons, rings nearer the pupil and those nearer

the limbus are affected more by bit errors than those in the middle (see Fig. 4a).

When considering angular partitioning, sectors around 90◦ are the most affected

(a) (b)

Figure 4: Mean normalised bit error as a function of the (a) radius and (b) angle for genuine

and impostor distributions using the whole reference data set (ICE 2005) and dividing the

images into 12 rings and 12 sectors respectively.

12



by bit errors (see Fig. 4b). This behaviour may be attributed to segmentation

errors, which are especially prevalent in the eyelid area. Since this work focuses

on analysing how the consistency of bits in iris codes differ from one sample to

another for the same identity, genuine comparisons are of more interest. From

here on, only genuine comparisons will be analysed.

4. Factors Affecting the Distribution of Bit Errors Within the Iris

Using ICE 2005 and OSIRISv4.1 as the reference data set and reference iris

recognition system, a V-shaped radial trend of decreasing bit errors towards

the central region of the iris is obtained for genuine comparisons, and it is

observed that the distribution of bit errors as a function of angle peaks in the

upper eyelid area. Some factors have been previously demonstrated [4, 7, 8]

to affect such distribution. Using the proposed methodology, an extended list

of the factors that are more likely to influence the spatial distribution of bit

errors is considered, and a thorough and systematic analysis is carried out to

quantitatively assess their effect. The factors that are analysed in this section

are: segmentation, capture sensor, resampling, input iris image resolution, filter

type and encoding scheme, and changes in pupil size.

4.1. Effect of Segmentation

One of the most common sources of error in iris recognition is imperfect

segmentation. In order to check how segmentation errors affect the distribu-

tion of bit errors, images from the reference database (ICE 2005) are auto-

matically segmented as described in Subsection 3.2.1 for OSIRISv4.1, and then

subjected to a manual selection process to retain only those that are correctly

segmented. A manual segmentation process is then performed to refine the

mask and eliminate residual errors to the extent possible. After the selection

process, a segmentation-error-free reference subset is obtained which includes

1232 images (see Table 1).
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For analysis purposes, the difference between the bit error distributions cor-

responding to the whole data set vs. the segmentation-error-free subset can be

seen in Fig. 5 for the genuine distribution.

According to Fig. 5a, eliminating segmentation errors reduces the mean nor-

malised bit error per ring up to 0.038 (3.8%) on average, but it does not alter

their distribution as a function of the radius. On the contrary, the effect of

segmentation on the angular distribution of bit errors is more noticeable. Ac-

cording to Fig. 5b, the mean normalised bit error calculated for different sectors

using the segmentation-error-free reference subset is almost uniform, and the

average equals 0.3 (30%). Therefore, the peak bit error that can be observed

around 90◦ when the whole database is used (see cyan bars) and the trends to-

wards and away from this peak, are mainly due to segmentation errors. These

segmentation errors arise in the upper part of the iris, where occlusions due to

eyelids and eyelashes are more common.

From here on, the result shown in Fig. 5 for the segmentation-error-free

reference subset will be used as the reference bit error distribution. In order to

validate the previous result and obtain statistical confidence, repeated random

sub-sampling based validation is used. Three quarters of the iris samples from

the segmentation-error-free subset are randomly selected and 100 such Monte

(a) (b)

Figure 5: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the whole reference data set and the segmentation-error-free

reference subset.
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Carlo trials are used to compute statistics. Results are shown in Fig. 6 with the

standard deviation for each ring and sector represented as an error bar above

and below the mean values in each case.

According to the results, the V-shaped trend for radial partitions or rings

is statistically significant, and any deviation from a uniform error distribution

for angular partitions or sectors is not statistically significant. The maximum

standard deviation when considering radial partitioning occurs for the middle

ring (ring 6) and is equal to 0.0055. The mean value for the standard deviation

is 0.0048. In the case of angular partitioning, a maximum standard deviation of

0.011 occurs for sectors around 90◦. The mean value for the standard deviation

in this case is equal to 0.0069. The maximum standard deviation in the angular

case may be arising from minor imperfections that remain even in the trimmed

reference subset presumed free of segmentation errors. The reference bit error

distribution shown in Fig. 6 in a bar diagram is mapped to a schematic iris in

Fig. 7.

(a) (b)

Figure 6: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the segmentation-error-free reference subset. The error bars

are one standard deviation. This will be considered the reference distribution of bit errors in

the rest of the experiments.
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Figure 7: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the segmentation-error-free reference subset, mapped to a

schematic iris.

4.2. Effect of the Capture Sensor

To investigate whether the distribution of bit errors is biased by the particu-

lar sensor used to capture the iris images, images from three data sets captured

with different iris sensors are considered in this test. Such data sets are ICE

2005, CASIA-IrisV4-Thousand, and IDDS:NC (see Subsection 3.1 for details

about the databases and iris sensors). To exclude the effect of segmentation

from the results, segmentation-error-free images from each data set are consid-

ered (see Table 1). It should be noted that the iris images in the three data

sets were acquired from different populations, so some effect of the test popu-

lation on the results cannot be eliminated. The comparison between the mean

normalised bit error computed as a function of the radius and the angle for the

three trimmed data sets is shown in Fig. 8.

According to Fig. 8a, a very similar radial distribution of bit errors is ob-

tained for all three databases. Rings 4 to 6 are the least affected by bit errors,

and rings nearer to the pupil and limbus are the most affected. Results from

Fig. 8b show that bit errors are not distributed exactly the same way for each of

the three databases with respect to angular variation, although the distribution

is quite uniform in all cases. Bit errors fluctuate around a clearly defined aver-
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(a) (b)

Figure 8: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the segmentation-error-free images from three databases that

use different iris sensors: ICE 2005, CASIA-IrisV4-Thousand, and IDDS:NC.

age (0.32 for CASIA-IrisV4-Thousand, 0.3 for ICE 2005 and 0.25 for IDDS:NC),

with variations that never exceed 0.03. The fact that IDDS:NC shows the lowest

mean normalised bit error with the same input image resolution as ICE 2005

and CASIA-IrisV4-Thousand is due to the fact that IDDS:NC images were cap-

tured under more ideal conditions. From this experiment it can be concluded

that using different input sensors and different populations results in data ex-

hibiting different mean normalised bit error, but does not affect the general trend

of the radial or angular distributions of bit errors.

4.3. Effect of Resampling

In iris recognition, once the pupil and iris boundaries are located, an iris

normalisation process is carried out to map the annular iris region to a rect-

angular block of fixed dimensions. Iris normalisation is performed in order to

counteract changes in the size and scale of the iris patterns. As described by

Daugman in [13], invariance to these factors can be achieved by remapping the

iris image from Cartesian coordinates to a doubly dimensionless pseudo-polar

coordinate system (see Fig. 9).

According to Daugman’s rubber sheet model, the remapping of the iris im-

age I(x(r, θ), y(r, θ)) −→ I(r, θ) can be represented according to equation (2),
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Figure 9: Iris normalisation according to Daugman’s rubber sheet model [13].

where (xp(θ), yp(θ)) and (xs(θ), ys(θ)) are the discrete coordinates nearest to

the pupillary and limbic boundaries, respectively, at a given angle θ ∈ [0, 2π],

and r is the normalised radius in the interval [0, 1].

x(r, θ) = (1− r) xp(θ) + r xs(θ),

y(r, θ) = (1− r) yp(θ) + r ys(θ).
(2)

Normalisation involves a resampling process. In the original image, circum-

ferences with different radii have different numbers of pixels, and the distance

from the pupillary boundary to the limbic boundary is different for different

pupil sizes. However, the normalised image has a constant width and a constant

height. The effect of resampling on the distribution of bit errors is investigated

by changing the size of the normalised image. Using the reference iris recog-

nition system (OSIRISv4.1), the iris area in the raw iris image is remapped to

a normalised rectangular image with fixed dimensions of 512 × 72 using equa-

tion (2). For this test, the reference size of the normalised image is kept the

same (512 × 72) and the distribution of bit errors is checked for smaller and

bigger heights (512× 36 and 512× 144) and widths (256× 72 and 1024× 72).

By progressively changing the normalised image height it is possible to de-

termine the radial influence of resampling. Results of the mean normalised bit

error as functions of the radius and the angle are shown in Fig. 10 for the three

sizes under analysis: 512× 36, 512× 72 (reference) and 512× 144.
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Since the normalised image height is related only to the iris radius, height

changes have only a minor effect on the angular distribution of bit errors (see

Fig. 10b), with variations from the reference under 0.035. Nevertheless, they

have a minor effect on the radial distribution of bit errors too (see Fig. 10a),

and the biggest variation with respect to the reference is equal to 0.039. The

results obtained indicate that height resampling hardly has any influence on

the distribution of bit errors. It is revealing that changes in the height of the

normalised image do not produce a noticeable change in the mean normalised

bit error for radial partitioning.

In order to determine the angular influence of resampling, the width of the

normalised image is progressively changed, as 256×72, 512×72 (reference) and

1024×72. Fig. 11 shows the result of this experiment. According to the results,

the distribution of bit errors when considering radial and angular partitioning

is the same for the three cases. However, unlike the previous case, changing the

width of the normalised image has a noticeable effect on the mean normalised bit

error. The worst performance is obtained when doubling the reference width,

with variations from the reference error equal to 0.055 on average. The fact that

(a) (b)

Figure 10: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the segmentation-error-free reference subset with different

normalised image heights: 512 × 36, 512 × 72 (ref) and 512 × 144. Test used to check the

radial influence of resampling in the distribution of bit errors.
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(a) (b)

Figure 11: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the segmentation-error-free reference subset with different

normalised image widths: 256 × 72, 512 × 72 (ref) and 1024 × 72. Test used to check the

angular influence of resampling in the distribution of bit errors.

the lowest mean normalised bit error is obtained for a size of the normalised

image equal to 256 × 72 suggests that such size is more suitable since it leads

to a better performance.

4.4. Effect of Input Iris Image Resolution

Image resolution is a key factor in iris recognition since poor resolution of

the iris significantly degrades the performance. Iris image resolution depends

on the specific capture sensor, and also on the distance between the user and

the sensor. Robustness to iris size changes due to the distance between the user

and the sensor can be achieved by normalisation.

The effect of the resolution of the input iris image on the distribution of bit

errors is determined by using different resolution inputs and normalising them

to the same pixel grid for further processing. For this test, the resolution of

all the segmentation-error-free images in the reference iris data set is changed

from 640 × 480 to 320 × 240. The images from the segmentation-error-free

reference subset and the lower resolution subset are normalised to the same size

(512×72) and processed in the same manner. The mean normalised bit error is
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(a) (b)

Figure 12: Mean normalised bit error as a function of the (a) radius and (b) angle calcu-

lated from genuine comparisons using the input iris images from the segmentation-error-free

reference subset at two different resolutions: 320 × 240 and 640 × 480 (ref).

then computed and compared. Results are shown in Fig. 12. According to the

results, the distribution of bit errors is of the same shape in both cases for both

radial and angular partitions, however, the mean normalised bit error increases

for the lower resolution images. This result is consistent with the loss of texture

detail from lowering the resolution. From this experiment it can be concluded

that the lowest mean normalised bit error is obtained for the database with the

highest resolution input images.

4.5. Effect of Filter Type and Encoding Scheme

Another important factor that might affect the distribution of bit errors

within the iris is the filter used to obtain the binary iris codes required to

compute the error. To investigate the effect of the feature extraction filter on

the distribution of bit errors within the iris, the mean normalised bit error is

calculated using two iris recognition systems which use three different types of

filter. These are OSIRISv4.1 and USITv1.0.3. As detailed in Subsection 3.2, the

first system is configured to use a bank of 2-D Gabor filters for feature extraction,

whereas the second one uses 1-D log-Gabor filters (Masek’s algorithm) and

1-D quadratic spline filters (Ma’s algorithm). It should be noted that while
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OSIRISv4.1 and Masek’s algorithm use phase encoding, Ma’s algorithm changes

from a sequence of 1s to a sequence of 0s every time a local sharp variation

point (maxima or minima) is found, so some effect of the encoding scheme

on the results cannot be eliminated. As in all the previous tests, only the

segmentation-error-free images from the reference iris data set are used.

The difference between the mean normalised bit errors calculated with the

three filters is shown in Fig. 13. According to Fig. 13a, a very similar shaped

radial distribution of bit errors is obtained in all cases. Rings 4 to 8 are the

least affected by bit errors, and rings closer to the pupil and the limbus are the

most affected. The angular distributions of bit errors shown in Fig. 13b are not

exactly the same but are quite uniform in all cases. The mean normalised bit

error fluctuates around a clearly defined average (0.33 for 1-D quadratic spline

filter, 0.3 for 1-D log-Gabor filter, and 0.3 for 2-D Gabor filter) with variations

that never exceed 0.024. From this experiment it can be concluded that using

different filters (Gabor, log-Gabor and quadratic spline filters in this case) and

encoding schemes (encoding based on local variation points and phase encoding)

results in data exhibiting different mean normalised bit error, but does not affect

the general trend of the radial or angular distributions of bit errors.

(a) (b)

Figure 13: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the segmentation-error-free reference subset with two iris

recognition systems that use three different filters: 1-D quadratic spline filter, 1-D log-Gabor

filter, and 2-D Gabor filter.
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4.6. Effect of Changes in Pupil Size

In [4] and [7], the authors hypothesise about the effect of pupil dilation on

the consistency of the inner regions of the iris, but no experiments are presented

to test this hypothesis. In [19], bit error analysis was used to investigate and

compare the effects of light and drug induced pupil dilation and constriction

considering various degrees of dilation. New results for the mean normalised bit

error are calculated here for images affected by drug-induced and light-induced

pupil dilation and constriction, without differentiating between dilation degrees.

To analyse the effect of pupil dilation on the distribution of bit errors within

the iris, the mean normalised bit error is calculated for images affected by drug-

induced pupil dilation (IDDS:Dilation-drugs) and light-induced pupil dilation

(IDDS:Dilation-light) when comparing them with the corresponding templates

captured under normal conditions (IDDS:NC). The result of this comparison is

shown in Fig. 14.

According to Fig. 14a, the V-shaped trend obtained for radial partitions or

rings disappears when the iris is affected by drug-induced pupil dilation. Due to

the smaller amount of iris area visible and the degradation of iris texture detail,

bit errors are distributed in a more uniform way, although the four rings nearer

(a) (b)

Figure 14: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the images from the IDDS light-induced and drug-induced

pupil dilation subsets (IDDS:Dilation-light and IDDS:Dilation-drugs), and their counterparts

under normal conditions (IDDS:NC).
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to the pupil are clearly more affected by the dilation and show an increased

number of errors. In the case of light-induced pupil dilation, the original V-

shaped trend is not totally lost, but slightly displaced towards more outer rings

of the iris. This displacement suggests that the inner rings of the iris are more

severely affected by pupil dilation. The distributions of bit errors for angular

partitions or sectors shown in Fig. 14b are quite uniform in all cases, although

a small increase in the mean normalised bit error can be observed in sectors

between 50◦ and 150◦. This may be arising from the minor imperfections that

remain after manual mask refinement.

In agreement with previously reported results in which pupil dilation is

demonstrated to affect iris recognition performance [20, 21], the graphs in Fig. 14

clearly show that the mean normalised bit error increases considerably when

matching iris images with large differences in pupil size. Since pupil dilation

reduces the amount of iris area visible, there is less information (fewer pixels)

to characterise the texture of the iris. This increases the number of bit errors.

Compared with the reference case in which images are captured under normal

conditions and show normal pupil sizes, the mean normalised bit error increases

on average by 0.104 (10.4%) for drug-induced pupil dilation and by 0.086 (8.6%)

for light-induced pupil dilation. This result indicates that the effect of mydriatic

drugs on the iris texture is more severe than the effect provoked by the absence

of light. The difference between drug- and light-induced pupil dilation is espe-

cially noticeable in those rings closer to the pupil. This correlates well the fact

that the mydriatic agent instilled to the users (1% tropicamide) leads to the

paralysis of the sphincter iris muscle [22] located in the pupillary area.

To investigate the effect of pupil constriction on the consistency of bits in iris

codes, and check whether there are relevant differences between pupil dilation

and constriction, the mean normalised bit error is computed as a function of the

iris radius and angle. Fig. 15 shows the bit error distributions of images affected

by drug-induced pupil constriction (IDDS:Constriction-drugs) and light-induced

pupil constriction (IDDS:Constriction-light) when comparing them with the cor-

responding templates captured under normal conditions (IDDS:NC).
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(a) (b)

Figure 15: Mean normalised bit error as a function of the (a) radius and (b) angle calculated

from genuine comparisons using the images from the IDDS light-induced and drug-induced

pupil constriction subsets (IDDS:Constriction-light and IDDS:Constriction-drugs), and their

counterparts under normal conditions (IDDS:NC).

Results in Fig. 15a show that for drug-induced constriction the bit errors

show a decreasing trend from the pupil outwards rather than a V-shaped trend.

In the case of light-induced pupil constriction, the radial bit error distribution

retains characteristics of the V-shaped trend of the reference data, although it

gets stretched up near the pupil. Fig. 15b shows that the mean normalised bit

error as a function of the angle retains the uniform distribution. The increase

in the number of bit errors when images are affected by pupil constriction is

due to the fact that some of the texture information that becomes available

when the pupil constricts is not available in the reference images, which are

captured under normal conditions and show normal pupil sizes. On average,

the mean normalised bit error increases by 0.098 (9.8%) for drug-induced pupil

constriction and by 0.078 (7.8%) for light-induced pupil constriction. As in

the case of dilation, bit errors arising from drug-induced pupil constriction are

higher than those arising from light-induced pupil constriction (2% higher on

average). The effect of the miotic agent on the iris muscles might be the cause

of this.

A more detailed analysis of the effect of drug and light induced changes in

pupil size on the distribution of bit errors within the iris can be found in [19].
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5. Conclusion

The distribution of bit errors in iris codes as functions of radius (ring) and

angle (sector) for a range of factors is analysed in this work more comprehen-

sively than previous studies of consistency of iris codes. Three data sets and

two open source iris recognition systems have been used in the study. The effect

of segmentation errors is first checked and then eliminated manually to ensure

that all segmentation and masking is as accurate as possible. Images free from

segmentation errors are used to investigate the effects of other factors. Factors

investigated in this work include different capture sensors, image resolutions,

feature extraction and encoding algorithms, and pupil sizes. In general, results

confirm the trend observed in previous studies for images where the pupil size

is normal. The mean normalised bit error for genuine comparisons increases as

a function of the radius towards both the pupillary and limbic boundaries (V-

shaped trend). This study makes additional observations. The V-shaped trend

is found not to be significantly changed regardless of the capture sensor, re-

sampling, image resolution, filter and encoding algorithm. The only factor that

destroys the V-shaped bit error distribution as a function of radius is a signifi-

cant pupil size change in the form of dilation or constriction. Both dilation and

constriction result in increased bit errors, especially in the pupillary area. Drug

induced changes are found to be more pronounced than light induced changes.

They increase the mean normalised bit error and make the radial distribution of

errors more uniform. The mean normalised bit error distribution as a function

of angle is found to be essentially uniform regardless of the factor investigated

with a small decrease in the errors towards sectors closer to the eye corners.
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